kolutastmr

2022-07-02

Logarithmic system of equations

$\begin{array}{rl}\mathrm{ln}(x)& =3\mathrm{ln}(y)\\ \text{}{3}^{x}& ={27}^{y}\end{array}$

$\begin{array}{rl}\mathrm{ln}(x)& =3\mathrm{ln}(y)\\ \text{}{3}^{x}& ={27}^{y}\end{array}$

fugprurgeil

Beginner2022-07-03Added 12 answers

Notice

$\mathrm{ln}x=2\mathrm{ln}y\phantom{\rule{thickmathspace}{0ex}}\u27fa\phantom{\rule{thickmathspace}{0ex}}\mathrm{ln}x=\mathrm{ln}{y}^{2}\phantom{\rule{thickmathspace}{0ex}}\u27fa\phantom{\rule{thickmathspace}{0ex}}x={y}^{2}$

and

${3}^{x}=27y\phantom{\rule{thickmathspace}{0ex}}\u27fa\phantom{\rule{thickmathspace}{0ex}}{3}^{x}={3}^{3}y\phantom{\rule{thickmathspace}{0ex}}\u27fa\phantom{\rule{thickmathspace}{0ex}}{3}^{x-3}=y\phantom{\rule{thickmathspace}{0ex}}\u27fa\phantom{\rule{thickmathspace}{0ex}}{3}^{{y}^{2}-3}=y\phantom{\rule{thickmathspace}{0ex}}\u27fa\phantom{\rule{thickmathspace}{0ex}}\mathrm{ln}3({y}^{2}-3)=y\phantom{\rule{thickmathspace}{0ex}}\u27fa\phantom{\rule{thickmathspace}{0ex}}{y}^{2}-3-\frac{y}{\mathrm{ln}3}=0\phantom{\rule{thickmathspace}{0ex}}\u27fa\phantom{\rule{thickmathspace}{0ex}}{y}^{2}-\frac{1}{\mathrm{ln}3}y-3=0$

This is a quadratic equation, which you can easily solve.

$\mathrm{ln}x=2\mathrm{ln}y\phantom{\rule{thickmathspace}{0ex}}\u27fa\phantom{\rule{thickmathspace}{0ex}}\mathrm{ln}x=\mathrm{ln}{y}^{2}\phantom{\rule{thickmathspace}{0ex}}\u27fa\phantom{\rule{thickmathspace}{0ex}}x={y}^{2}$

and

${3}^{x}=27y\phantom{\rule{thickmathspace}{0ex}}\u27fa\phantom{\rule{thickmathspace}{0ex}}{3}^{x}={3}^{3}y\phantom{\rule{thickmathspace}{0ex}}\u27fa\phantom{\rule{thickmathspace}{0ex}}{3}^{x-3}=y\phantom{\rule{thickmathspace}{0ex}}\u27fa\phantom{\rule{thickmathspace}{0ex}}{3}^{{y}^{2}-3}=y\phantom{\rule{thickmathspace}{0ex}}\u27fa\phantom{\rule{thickmathspace}{0ex}}\mathrm{ln}3({y}^{2}-3)=y\phantom{\rule{thickmathspace}{0ex}}\u27fa\phantom{\rule{thickmathspace}{0ex}}{y}^{2}-3-\frac{y}{\mathrm{ln}3}=0\phantom{\rule{thickmathspace}{0ex}}\u27fa\phantom{\rule{thickmathspace}{0ex}}{y}^{2}-\frac{1}{\mathrm{ln}3}y-3=0$

This is a quadratic equation, which you can easily solve.

Palmosigx

Beginner2022-07-04Added 4 answers

The first equation says that $x,y>0$ and then it's equivalent to $x={e}^{\mathrm{ln}x}={e}^{3\mathrm{ln}y}={e}^{\mathrm{ln}{y}^{3}}={y}^{3}$.

The second equation is equivalent to $x=3y$ by taking a logarithm, so we have

$3y={y}^{3}\u27fay(y-\sqrt{3})(y+\sqrt{3})=0$

and the only solution is $y=\sqrt{3}$, which gives $x=3\sqrt{3}$.

The second equation is equivalent to $x=3y$ by taking a logarithm, so we have

$3y={y}^{3}\u27fay(y-\sqrt{3})(y+\sqrt{3})=0$

and the only solution is $y=\sqrt{3}$, which gives $x=3\sqrt{3}$.

Find the volume V of the described solid S

A cap of a sphere with radius r and height h.

V=??

Whether each of these functions is a bijection from R to R.

a) $f(x)=-3x+4$

b) $f\left(x\right)=-3{x}^{2}+7$

c) $f(x)=\frac{x+1}{x+2}$

?

$d)f\left(x\right)={x}^{5}+1$In how many different orders can five runners finish a race if no ties are allowed???

State which of the following are linear functions?

a.$f(x)=3$

b.$g(x)=5-2x$

c.$h\left(x\right)=\frac{2}{x}+3$

d.$t(x)=5(x-2)$ Three ounces of cinnamon costs $2.40. If there are 16 ounces in 1 pound, how much does cinnamon cost per pound?

A square is also a

A)Rhombus;

B)Parallelogram;

C)Kite;

D)none of theseWhat is the order of the numbers from least to greatest.

$A=1.5\times {10}^{3}$,

$B=1.4\times {10}^{-1}$,

$C=2\times {10}^{3}$,

$D=1.4\times {10}^{-2}$Write the numerical value of $1.75\times {10}^{-3}$

Solve for y. 2y - 3 = 9

A)5;

B)4;

C)6;

D)3How to graph $y=\frac{1}{2}x-1$?

How to graph $y=2x+1$ using a table?

simplify $\sqrt{257}$

How to find the vertex of the parabola by completing the square ${x}^{2}-6x+8=y$?

There are 60 minutes in an hour. How many minutes are there in a day (24 hours)?

Write 18 thousand in scientific notation.