Expand each function (using the appropriate technique/formula) Compute

Angelica Abat

Angelica Abat

Answered question

2022-03-31

Expand each function (using the appropriate technique/formula) Compute the derivative of the expanded function by applying the differentiation rules  

 

f(x)= sin(2x)

f(x)= (3x-2)^3

f(x)= (x^2+2x+3)^2

Answer & Explanation

alenahelenash

alenahelenash

Expert2022-06-06Added 556 answers

1) f(x)=sin(2x)

Differentiate using the chain rule, which states that ddx[f(g(x))] is f(g(x))g(x) where f(x)=sin(x) and g(x)=2x.

To apply the Chain Rule, set u as 2x.

ddu[sin(u)]ddx[2x]

The derivative of sin(u) with respect to u is cos(u).

cos(u)ddx[2x]

Replace all occurrences of u with 2x.

cos(2x)ddx[2x]

Differentiate.

Since 2 is constant with respect to xx, the derivative of 2x with respect to x is 2ddx[x].

cos(2x)(2ddx[x])

Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.

cos(2x)(21)

Simplify the expression.

Multiply 2 by 1.

cos(2x)2

Move 2 to the left of cos(2x).

2cos(2x)

2) f(x)=(3x-2)3

Differentiate using the chain rule, which states that ddx[f(g(x))] is f(g(x))g(x) where f(x)=x3f(x)=x3 and g(x)=3x-2.

To apply the Chain Rule, set u as 3x-2.

ddu[u3]ddx[3x-2]

Differentiate using the Power Rule which states that ddu[un] is nun-1 where n=3.

3u2ddx[3x-2]

Replace all occurrences of u with 3x-2.

3(3x-2)2ddx[3x-2]

Differentiate.

By the Sum Rule, the derivative of 3x-2 with respect to x is ddx[3x]+ddx[-2].

3(3x-2)2(ddx[3x]+ddx[-2])

Since 3 is constant with respect to x, the derivative of 3x with respect to x is 3ddx[x].

3(3x-2)2(3ddx[x]+ddx[-2])

Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.

3(3x-2)2(31+ddx[-2])

Multiply 3 by 1.

3(3x-2)2(3+ddx[-2])

Since -2 is constant with respect to x, the derivative of -2 with respect to x is 0.

3(3x-2)2(3+0)

Simplify the expression.

9(3x2)2

3) f(x)=(x2+2x+3)2

Differentiate using the chain rule, which states that ddx[f(g(x))] is f(g(x))g(x) where f(x)=x2 and g(x)=x2+2x+3.

To apply the Chain Rule, set u as x2+2x+3.

ddu[u2]ddx[x2+2x+3]

Differentiate using the Power Rule which states that ddu[un] is nun-1 where n=2.

2uddx[x2+2x+3]

Replace all occurrences of u with x2+2x+3.

2(x2+2x+3)ddx[x2+2x+3]

Differentiate.

By the Sum Rule, the derivative of x2+2x+3 with respect to x is ddx[x2]+ddx[2x]+ddx[3].

2(x2+2x+3)(ddx[x2]+ddx[2x]+ddx[3])

Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.

2(x2+2x+3)(2x+ddx[2x]+ddx[3])

Since 2 is constant with respect to x, the derivative of 2x with respect to x is 2ddx[x].

2(x2+2x+3)(2x+2ddx[x]+ddx[3])

Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.

2(x2+2x+3)(2x+21+ddx[3])

Multiply 2 by 1.

2(x2+2x+3)(2x+2+ddx[3])

Since 3 is constant with respect to x, the derivative of 3 with respect to x is 0.

2(x2+2x+3)(2x+2+0)

Add 2x+2 and 0.

2(x2+2x+3)(2x+2)

Simplify.

Apply the distributive property.

(2x2+2(2x)+23)(2x+2)

Combine terms.

(2x2+4x+6)(2x+2)

Reorder the factors of (2x2+4x+6)(2x+2).

(2x+2)(2x2+4x+6)

Expand (2x+2)(2x2+4x+6) by multiplying each term in the first expression by each term in the second expression.

2x(2x2)+2x(4x)+2x6+2(2x2)+2(4x)+26

Simplify each term.

4x3+8x2+12x+4x2+8x+12

Add 8x2 and 4x2.

4x3+12x2+12x+8x+12

Add 12x and 8x.

4x3+12x2+20x+12

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?