Find the derivative of 6 + 2 x + x 2 </mrow> <mo stretchy=

dresu9dnjn

dresu9dnjn

Answered question

2022-05-11

Find the derivative of ( 6 + 2 x + x 2 ) 1 + x .

Answer & Explanation

Gerardo Barry

Gerardo Barry

Beginner2022-05-12Added 17 answers

Use axn=axn to rewrite 1+x as (1+x)12.

ddx[(6+2x+x2)(1+x)12]

Differentiate using the Product Rule which states that ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=6+2x+x2 and g(x)=(1+x)12.

(6+2x+x2)ddx[(1+x)12]+(1+x)12ddx[6+2x+x2]

Differentiate using the chain rule, which states that ddx[f(g(x))] is f(g(x))g(x) where f(x)=x12 and g(x)=1+x.

(6+2x+x2)(12(1+x)12-1ddx[1+x])+(1+x)12ddx[6+2x+x2]

To write -1 as a fraction with a common denominator, multiply by 22.

(6+2x+x2)(12(1+x)12-122ddx[1+x])+(1+x)12ddx[6+2x+x2]

Combine -1 and 22.

(6+2x+x2)(12(1+x)12+-122ddx[1+x])+(1+x)12ddx[6+2x+x2]

Combine the numerators over the common denominator.

(6+2x+x2)(12(1+x)1-122ddx[1+x])+(1+x)12ddx[6+2x+x2]

Simplify the numerator.

(6+2x+x2)(12(1+x)-12ddx[1+x])+(1+x)12ddx[6+2x+x2]

Combine fractions.

(6+2x+x2)(12(1+x)12ddx[1+x])+(1+x)12ddx[6+2x+x2]

By the Sum Rule, the derivative of 1+x with respect to x is ddx[1]+ddx[x].

(6+2x+x2)12(1+x)12(ddx[1]+ddx[x])+(1+x)12ddx[6+2x+x2]

Since 1 is constant with respect to x, the derivative of 1 with respect to x is 0.

(6+2x+x2)12(1+x)12(0+ddx[x])+(1+x)12ddx[6+2x+x2]

Add 0 and ddx[x].

(6+2x+x2)12(1+x)12ddx[x]+(1+x)12ddx[6+2x+x2]

Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.

(6+2x+x2)12(1+x)121+(1+x)12ddx[6+2x+x2]

Multiply 6+2x+x2 by 1.

(6+2x+x2)12(1+x)12+(1+x)12ddx[6+2x+x2]

By the Sum Rule, the derivative of 6+2x+x2 with respect to x is ddx[6]+ddx[2x]+ddx[x2].

(6+2x+x2)12(1+x)12+(1+x)12(ddx[6]+ddx[2x]+ddx[x2])

Since 6 is constant with respect to xx, the derivative of 6 with respect to x is 0.

(6+2x+x2)12(1+x)12+(1+x)12(0+ddx[2x]+ddx[x2])

Add 0 and ddx[2x].

(6+2x+x2)12(1+x)12+(1+x)12(ddx[2x]+ddx[x2])

Since 2 is constant with respect to x, the derivative of 2x with respect to x is 2ddx[x].

(6+2x+x2)12(1+x)12+(1+x)12(2ddx[x]+ddx[x2])

Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.

(6+2x+x2)12(1+x)12+(1+x)12(21+ddx[x2])

Multiply 22 by 11.

(6+2x+x2)12(1+x)12+(1+x)12(2+ddx[x2])

Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.

(6+2x+x2)12(1+x)12+(1+x)12(2+2x)

Simplify.

5(x2+2x+2)2(1+x)12

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?