Find the derivative of 1 + x + 7 x 2 </mrow> <mo stretchy="

zuzogiecwu

zuzogiecwu

Answered question

2022-04-10

Find the derivative of ( 1 + x + 7 x 2 )  6 + 4 x 3 .

Answer & Explanation

Blaine Andrews

Blaine Andrews

Beginner2022-04-11Added 20 answers

Use axn=axn to rewrite 6+4x3 as (6+4x)13.

ddx[(1+x+7x2)(6+4x)13]

Differentiate using the Product Rule which states that ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=1+x+7x2 and g(x)=(6+4x)13.

(1+x+7x2)ddx[(6+4x)13]+(6+4x)13ddx[1+x+7x2]

Differentiate using the chain rule, which states that ddx[f(g(x))] is f(g(x))g(x) where f(x)=x13 and g(x)=6+4x.

(1+x+7x2)(13(6+4x)13-1ddx[6+4x])+(6+4x)13ddx[1+x+7x2]

To write -1 as a fraction with a common denominator, multiply by 33.

(1+x+7x2)(13(6+4x)13-133ddx[6+4x])+(6+4x)13ddx[1+x+7x2]

Combine -1 and 33.

(1+x+7x2)(13(6+4x)13+-133ddx[6+4x])+(6+4x)13ddx[1+x+7x2]

Combine the numerators over the common denominator.

(1+x+7x2)(13(6+4x)1-133ddx[6+4x])+(6+4x)13ddx[1+x+7x2]

Simplify the numerator.

(1+x+7x2)(13(6+4x)-23ddx[6+4x])+(6+4x)13ddx[1+x+7x2]

Combine fractions.

(1+x+7x2)(13(6+4x)23ddx[6+4x])+(6+4x)13ddx[1+x+7x2]

By the Sum Rule, the derivative of 6+4x with respect to x is ddx[6]+ddx[4x].

(1+x+7x2)13(6+4x)23(ddx[6]+ddx[4x])+(6+4x)13ddx[1+x+7x2]

Since 6 is constant with respect to x, the derivative of 6 with respect to x is 0.

(1+x+7x2)13(6+4x)23(0+ddx[4x])+(6+4x)13ddx[1+x+7x2]

Add 0 and ddx[4x].

(1+x+7x2)13(6+4x)23ddx[4x]+(6+4x)13ddx[1+x+7x2]

Since 4 is constant with respect to x, the derivative of 4x with respect to x is 4ddx[x].

(1+x+7x2)13(6+4x)23(4ddx[x])+(6+4x)13ddx[1+x+7x2]

Combine 4 and 13(6+4x)23.

(1+x+7x2)43(6+4x)23ddx[x]+(6+4x)13ddx[1+x+7x2]

Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.

(1+x+7x2)43(6+4x)231+(6+4x)13ddx[1+x+7x2]

Multiply 1+x+7x2 by 1.

(1+x+7x2)43(6+4x)23+(6+4x)13ddx[1+x+7x2]

By the Sum Rule, the derivative of 1+x+7x2 with respect to x is ddx[1]+ddx[x]+ddx[7x2].

(1+x+7x2)43(6+4x)23+(6+4x)13(ddx[1]+ddx[x]+ddx[7x2])

Since 1 is constant with respect to x, the derivative of 1 with respect to x is 0.

(1+x+7x2)43(6+4x)23+(6+4x)13(0+ddx[x]+ddx[7x2])

Add 0 and ddx[x].

(1+x+7x2)43(6+4x)23+(6+4x)13(ddx[x]+ddx[7x2])

Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.

(1+x+7x2)43(6+4x)23+(6+4x)13(1+ddx[7x2])

Since 7 is constant with respect to x, the derivative of 7x2 with respect to x is 7ddx[x2].

(1+x+7x2)43(6+4x)23+(6+4x)13(1+7ddx[x2])

Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.

(1+x+7x2)43(6+4x)23+(6+4x)13(1+7(2x))

Multiply 2 by 7.

(1+x+7x2)43(6+4x)23+(6+4x)13(1+14x)

Simplify.

2(98x2+134x+11)3(6+4x)23

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?