Find the derivative of e 6 + x </mrow>

Peia6tvsr

Peia6tvsr

Answered question

2022-05-13

Find the derivative of e 6 + x cos ( π x 3 ) .

Answer & Explanation

Raelynn Parker

Raelynn Parker

Beginner2022-05-14Added 12 answers

Differentiate using the Quotient Rule which states that ddx[f(x)g(x)] is g(x)ddx[f(x)]-f(x)ddx[g(x)]g(x)2 where f(x)=e6+x and g(x)=cos(πx3).

cos(πx3)ddx[e6+x]-e6+xddx[cos(πx3)]cos2(πx3)

Differentiate using the chain rule, which states that ddx[f(g(x))] is f(g(x))g(x) where f(x)=ex and g(x)=6+x.

cos(πx3)(e6+xddx[6+x])-e6+xddx[cos(πx3)]cos2(πx3)

Differentiate.

cos(πx3)e6+x-e6+xddx[cos(πx3)]cos2(πx3)

Differentiate using the chain rule, which states that ddx[f(g(x))] is f(g(x))g(x) where f(x)=cos(x) and g(x)=πx3.

cos(πx3)e6+x-e6+x(-sin(πx3)ddx[πx3])cos2(πx3)

Differentiate.

cos(πx3)e6+x+πsin(πx3)e6+x3cos2(πx3)

To write cos(πx3)e6+x as a fraction with a common denominator, multiply by 33.

cos(πx3)e6+x33+πsin(πx3)e6+x3cos2(πx3)

Combine cos(πx3)e6+x and 33.

cos(πx3)e6+x33+πsin(πx3)e6+x3cos2(πx3)

Combine the numerators over the common denominator.

cos(πx3)e6+x3+πsin(πx3)e6+x3cos2(πx3)

Move 3 to the left of cos(πx3)e6+x.

3(cos(πx3)e6+x)+πsin(πx3)e6+x3cos2(πx3)

Rewrite 3cos(πx3)e6+x+πsin(πx3)e6+x3cos2(πx3) as a product.

3cos(πx3)e6+x+πsin(πx3)e6+x31cos2(πx3)

Convert from 1cos2(πx3) to sec2(πx3).

3cos(πx3)e6+x+πsin(πx3)e6+x3sec2(πx3)

Combine 3cos(πx3)e6+x+πsin(πx3)e6+x3 and sec2(πx3).

(3cos(πx3)e6+x+πsin(πx3)e6+x)sec2(πx3)3

Simplify.

e6+x(3cos(πx3)+π sin(πx3))3cos2(πx3)

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?