Find the derivative of <mroot> <mrow> 3 + 4 tan &#x2061;<!-- ⁡

sembuang711q6

sembuang711q6

Answered question

2022-05-12

Find the derivative of 3 + 4 tan ( π x ) 3 .

Answer & Explanation

Ariella Bruce

Ariella Bruce

Beginner2022-05-13Added 19 answers

Use axn=axn to rewrite 3+4tan(πx)3 as (3+4tan(πx))13.

ddx[(3+4tan(πx))13]

Differentiate using the chain rule, which states that ddx[f(g(x))] is f(g(x))g(x) where f(x)=x13 and g(x)=3+4tan(πx).

13(3+4tan(πx))13-1ddx[3+4tan(πx)]

To write -1 as a fraction with a common denominator, multiply by 33.

13(3+4tan(πx))13-133ddx[3+4tan(πx)]

Combine -1 and 33.

13(3+4tan(πx))13+-133ddx[3+4tan(πx)]

Combine the numerators over the common denominator.

13(3+4tan(πx))1-133ddx[3+4tan(πx)]

Simplify the numerator.

13(3+4tan(πx))-23ddx[3+4tan(πx)]

Differentiate.

43(3+4tan(πx))23ddx[tan(πx)]

Differentiate using the chain rule, which states that ddx[f(g(x))] is f(g(x))g(x) where f(x)=tan(x) and g(x)=πx.

43(3+4tan(πx))23(sec2(πx)ddx[πx])

Differentiate.

4πsec2(πx)3(3+4tan(πx))23

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?