Find the derivative of <msqrt> 2 + 4 sin &#x2061;<!-- ⁡ <mro

Jayla Faulkner

Jayla Faulkner

Answered question

2022-05-12

Find the derivative of 2 + 4 sin ( π x 4 ) .

Answer & Explanation

hospitaliapbury

hospitaliapbury

Beginner2022-05-13Added 25 answers

Use axn=axn to rewrite 2+4sin(πx4) as (2+4sin(πx4))12.

ddx[(2+4sin(πx4))12]

Differentiate using the chain rule, which states that ddx[f(g(x))] is f(g(x))g(x) where f(x)=x12 and g(x)=2+4sin(πx4).

12(2+4sin(πx4))12-1ddx[2+4sin(πx4)]

To write -1 as a fraction with a common denominator, multiply by 22.

12(2+4sin(πx4))12-122ddx[2+4sin(πx4)]

Combine -1 and 22.

12(2+4sin(πx4))12+-122ddx[2+4sin(πx4)]

Combine the numerators over the common denominator.

12(2+4sin(πx4))1-122ddx[2+4sin(πx4)]

Simplify the numerator.

12(2+4sin(πx4))-12ddx[2+4sin(πx4)]

Combine fractions.

12(2+4sin(πx4))12ddx[2+4sin(πx4)]

By the Sum Rule, the derivative of 2+4sin(πx4) with respect to x is ddx[2]+ddx[4sin(πx4)].

12(2+4sin(πx4))12(ddx[2]+ddx[4sin(πx4)])

Since 2 is constant with respect to x, the derivative of 2 with respect to x is 0.

12(2+4sin(πx4))12(0+ddx[4sin(πx4)])

Add 0 and ddx[4sin(πx4)].

12(2+4sin(πx4))12ddx[4sin(πx4)]

Since 4 is constant with respect to x, the derivative of 4sin(πx4) with respect to x is 4ddx[sin(πx4)].

12(2+4sin(πx4))12(4ddx[sin(πx4)])

Simplify terms.

222(2+4sin(πx4))12ddx[sin(πx4)]

Cancel the common factors.

2(2+4sin(πx4))12ddx[sin(πx4)]

Differentiate using the chain rule, which states that ddx[f(g(x))] is f(g(x))g(x) where f(x)=sin(x) and g(x)=πx4.

2(2+4sin(πx4))12(cos(πx4)ddx[πx4])

Differentiate using the Constant Multiple Rule.

2(πcos(πx4))4(2+4sin(πx4))12ddx[x]

Cancel the common factors.

πcos(πx4)2(2+4sin(πx4))12ddx[x]

Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.

πcos(πx4)2(2+4sin(πx4))121

Multiply πcos(πx4)2(2+4sin(πx4))12 by 1.

πcos(πx4)2(2+4sin(πx4))12


 

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?