Find the derivative of ln &#x2061;<!-- ⁡ 3 + 4 <mroot> <mrow> 6 +

3c4ar1bzki1u

3c4ar1bzki1u

Answered question

2022-04-10

Find the derivative of ln ( 3 + 4 6 + x 3 ).

Answer & Explanation

Lucille Melton

Lucille Melton

Beginner2022-04-11Added 18 answers

Use axn=axn to rewrite 6+x3 as (6+x)13.

ddx[ln(3+4(6+x)13)]

Differentiate using the chain rule, which states that ddx[f(g(x))] is f(g(x))g(x) where f(x)=ln(x) and g(x)=3+4(6+x)13.

13+4(6+x)13ddx[3+4(6+x)13]

Differentiate.

43+4(6+x)13ddx[(6+x)13]

Differentiate using the chain rule, which states that ddx[f(g(x))] is f(g(x))g(x) where f(x)=x13 and g(x)=6+x.

43+4(6+x)13(13(6+x)13-1ddx[6+x])

To write -1 as a fraction with a common denominator, multiply by 33.

43+4(6+x)13(13(6+x)13-133ddx[6+x])

Combine -1 and 33.

43+4(6+x)13(13(6+x)13+-133ddx[6+x])

Combine the numerators over the common denominator.

43+4(6+x)13(13(6+x)1-133ddx[6+x])

Simplify the numerator.

43+4(6+x)13(13(6+x)-23ddx[6+x])

Combine fractions.

43(6+x)23(3+4(6+x)13)ddx[6+x]

By the Sum Rule, the derivative of 6+x with respect to x is ddx[6]+ddx[x].

43(6+x)23(3+4(6+x)13)(ddx[6]+ddx[x])

Since 6 is constant with respect to x, the derivative of 6 with respect to x is 0.

43(6+x)23(3+4(6+x)13)(0+ddx[x])

Add 0 and ddx[x].

43(6+x)23(3+4(6+x)13)ddx[x]

Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.

43(6+x)23(3+4(6+x)13)1

Multiply 43(6+x)23(3+4(6+x)13) by 1.

43(6+x)23(3+4(6+x)13)


 

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?