What is <munder> <mo movablelimits="true" form="prefix">lim <mrow class="MJX-TeXAtom-O

tr2os8x

tr2os8x

Answered question

2022-06-23

What is lim x 0 x cos x sin x x 2 sin x ?

Answer & Explanation

Quinn Everett

Quinn Everett

Beginner2022-06-24Added 23 answers

lim x 0 x cos ( x ) sin ( x ) x 2 sin ( x ) =
Apply l'Hôpital's rule, to get:
d d x ( x cos ( x ) sin ( x ) ) = x sin ( x )
d d x ( x 2 sin ( x ) ) = x 2 cos ( x ) + 2 x sin ( x )
lim x 0 sin ( x ) x cos ( x ) + 2 sin ( x ) = lim x 0 sin ( x ) x cos ( x ) + 2 sin ( x ) =
Apply l'Hôpital's rule again, to get:
d d x ( sin ( x ) ) = cos ( x )
d d x ( x cos ( x ) + 2 sin ( x ) ) = 3 cos ( x ) x sin ( x )
lim x 0 cos ( x ) x sin ( x ) 3 cos ( x ) = lim x 0 cos ( x ) x sin ( x ) 3 cos ( x ) = cos ( 0 ) 0 sin ( 0 ) 3 cos ( 0 ) = 1 3
Brunton39

Brunton39

Beginner2022-06-25Added 8 answers

Use taylor expansions
c o s ( x ) = 1 x 2 2 ! + x 4 4 ! x 6 6 ! + . . .
x . c o s ( x ) = x x 3 2 ! + x 5 4 ! x 7 6 ! + . . .
s i n ( x ) = x x 3 3 ! + x 5 5 ! x 7 7 ! + . . .
x . c o s ( x ) s i n ( x ) = x 3 . ( 1 2 ! + 1 3 ! ) + x 5 . ( a 5 ) + . . .
x 2 . s i n ( x ) = x 3 x 5 3 ! + x 7 5 ! x 9 7 ! + . . .
x 2 . s i n ( x ) = x 3 ( 1 x 2 3 ! + x 4 5 ! x 6 7 ! + . . . )
Thus;
x . c o s ( x ) s i n ( x ) x 2 . s i n ( x ) = ( 1 2 ! + 1 3 ! ) + x 2 . a 5 + . . . ( 1 + x 2 . b 5 + . . . )
lim x 0 x . c o s ( x ) s i n ( x ) x 2 . s i n ( x ) = 1 2 ! + 1 3 ! = 1 3

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?