Find the coordinates of the point on the helix for arc lengths s = sqrt{5} and s = 4. Consider the helix represented investigation by the vector-valued function r(t)= < 2 cos t, 2 sin t, t >.

Harlen Pritchard

Harlen Pritchard

Answered question

2020-11-23

Find the coordinates of the point on the helix for arc lengths s= 5 and s=4. Consider the helix represented investigation by the vector-valued function r(t)= < 2 cos t, 2 sin t, t >.

Answer & Explanation

faldduE

faldduE

Skilled2020-11-24Added 109 answers

To calculate: The coordinates of the point on the helix for arc lengths s= 5 and s=4 For s= 5, the coordinates are 1.081 1.683 1 For s=4, the coordinates are 0.433 1.953 1.789 Given: The function r(t)= < 2 cos t, 2 sin t, t >. Calculation: The curve in terms of arc length is, r(s)=2 cos (s5)i + 2 sin (s5)j + s5k Case 1: s=5
r(5)=2 cos 55i + 2 sin (55)j + 55kt5k
=2 cos(1)i + 2 sin(1)j + 1k
=1.081i + 1.683j + 1k Case 2: s=4
r(4)=2 cos(45)i + 2 sin(45)j + 45k
= 0.433i + 1.953j + 1.789k Thus, for s= 5, the coordinates are(1.081, 1.683, 1) and for s=4, the coordinates are 0.433 1.953 1.789

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?