The solution of initial value problem y'' + 2y' + 2y=delta(t - pi), y(0)=0, y'(0)=1 and draw the graph of the solution.

generals336

generals336

Answered question

2021-01-04

The solution of initial value problem y + 2y + 2y=δ(t  π), y(0)=0, y(0)=1 and draw the graph of the solution.

Answer & Explanation

Brighton

Brighton

Skilled2021-01-05Added 103 answers

Let the differential equation y + 2y + 2y=δ(t  π)
Applying the Laplace transform to the differential equation,
Ly + 2y + 2y=Lδ(t  π)
Ly+2Ly+2Ly=Lδ(t  π)
By using Lfn(t)=snF(s)  sn  1f(0)    fn  1(0) and
Lδ(t  t0)=est0
 [s2Y(s)  sy(0)  y(0)] + 2[sY(s)  y(0)] + 2Y(s)=eπ s
Using the initial conditios y(0)=0 and y(0)=1,
[s2Y(s)  1] + 2sY(s)=eπ s
 Y(s)[s2 + 2s + 2]  1=eπ s
 Y(s)=1 + eπ ss2 + 2s + 2
 Y(s)=1(s + 1)2 + 1 + eπ s(s + 1) + 1
Now, applying the inverse Laplace transformation on both sides,
 L1Y(s)=L1{1(s + 1)2 + 1 + eπ s(s + 1)2 + 1}
 L1Y(s)=L1{1(s + 1)2 + 1} + L1{eπ s(s + 1)2 + 1}
By using L1ecsG(s)=uc(t)g(t  c) and properties of inverse Laplace,
 y(t)=e1sin t + uπ(t)e(t  π)sin(t  π)
Therefore, the solution of the initial value problem
y + 2y + 2y=δ(t  π), y(0)=0, y(0)=1 is
y(t)=etsin t + uπ(t)e(t  n)sin(t  π).
By using

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?