The given initial-value problem. y'' - 2y' - 8y = 5 y(0) = 1 y' (0) = 0

Yasmin

Yasmin

Answered question

2020-11-03

The given initial-value problem.
y  2y  8y=5
y(0)=1
y(0)=0

Answer & Explanation

Margot Mill

Margot Mill

Skilled2020-11-04Added 106 answers

To solve, we use the properties of the Laplace transform and the Laplace table
The Laplace transform satisfies the linearity properties
L[f=g]=L[f] + L[g]
L[cf]=cL[f]
For all transfotmable functions f and g and constants c.
Laplace transform:
L[y  2y  8y]=L[5]
L[y]  2L[y]  8L[y]=5L[1]
Undefined control sequence \8
Y(s)(s2  2s  8)  y(0) + y(0)(2  s)=5s
Substitute initial conditions,
y(0)=1
y(0)=0
Solve for Y(s)
Y(s)(s2  2s  8)  0 + 1(2  s)=5s
Y(s)(s2  2s  8)  s + 2=5s
Y(s)(s2  2s  8)=5s  (s + 2)
=5  (s + 2)ss
Y(s)=s2  2s + 5s(s2  2s  8)
=58s + 1312(s + 2) + 1324(s  4)
Inverse transform:
L1[Y(s)]=L1[58s + 1312(s + 2) + 1324(s  4)]
= 58L1[1s] + 1312L1[1s  (2)] + 1324L[1s  4]
y(t)= 58 + 1312e2t + 1324e4t

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?