If f(\theta)=\tan\theta and f(a)=2, find the exact value of: a) f(-a)ZS

illusiia

illusiia

Answered question

2021-08-15

If f(θ)=tanθ and f(a)=2, find the exact value of:
a) f(a)
b) f(a)+f(a+π)+f(a+2π)

Answer & Explanation

Bella

Bella

Skilled2021-08-16Added 81 answers

1) f(θ)=tanθ 
2) f(a)=2 
a) To find f(a)
Substitute (θ) in place of θ in (1): 
f(θ)=tan(θ) 
From the tangent trigonometric function's characteristic: 
tan(θ)=tanθ 
Thus, 
3) f(θ)=tanθ=f(θ) 
Equation (3) is the result of the odd function condition.

So, 
f(a)=f(a)=2 
 b) According to other property of tangent trigonometric function: 
tanθ=tan(θ+π) 
i.e. Period of tan θ is π which implies: 
tanθ=tan(θ+π)=tan(θ+2π)=tan(θ+3π)==tan(θ+nπ) 
Where n is an integer. 
Hence from (1): 
f(θ)=f(θ+π)=f(θ+2π)=f(θ+3π)==f(θ+nπ) 
Substitute θ=a: 
f(a)=f(a+π)=f(a+2π)=f(a+3π)==f(a+nπ) 

Using (2): 
f(a)=f(a+π)=f(a+2π)=f(a+3π)==f(a+nπ)=2 
Then, 
f(a)+f(a+π)+f(a+2π)=3f(a) 
32 
=6

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?