Evaluate the integrals. \int_1^e\frac{dx}{x+\ln x)}

Sinead Mcgee

Sinead Mcgee

Answered question

2021-10-25

Evaluate the integrals.
1edxx+lnx}

Answer & Explanation

Gennenzip

Gennenzip

Skilled2021-10-26Added 96 answers

To find the value of given definite integral.
Given information:
1edxx(1+lnx)
Integration formula:
1) 1tdt=lnt+C
Calculation:
1edxx(1+lnx)
Let,
1+lnx=v
Differentiate,
d(v)=d(1+lnx)
dv=(d(1)+d(lnx))
dv=(0+1xdx)
dv=1xdx
Change the limits for u.
Lower limit.
1+lnx=v
1+ln1=v
1+0=v
Upper limit.
1+lnx=v
1+lne=v
1+1=v
v=2
Substitute these values into given integral.
x=1edxx(1+lnx)=1(1+lnx)dxx
Substitute limits
x=1edxx(1+lnx)=[lnv]v=12
x=1edxx(1+lnx}=ln2ln1
x=1edxx(1+lnx}=ln20
x=1edxx(1+lnx}=ln2

2021-11-02

(dx)/(x(1+lnx)(2))

 

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?