Phoebe

Answered question

2021-11-09

Use a table of integrals to evaluate the following indefinite integrals.
$\int \mathrm{sin}3x\mathrm{cos}2xdx$

Answer & Explanation

pierretteA

Skilled2021-11-10Added 102 answers

Step 1
Given:
$\int \mathrm{sin}3x\mathrm{cos}2xdx$
Step 2
Now,
By using the following identity, we get,
$\mathrm{sin}\left(a\right)\mathrm{cos}\left(b\right)=\frac{1}{2}\left(\mathrm{sin}\left(a-b\right)+\mathrm{sin}\left(a+b\right)\right)$
$\int \mathrm{sin}3x\mathrm{cos}2xdx=\int \frac{1}{2}\left[\mathrm{sin}\left(3x-2x\right)+\mathrm{sin}\left(3x+2x\right)\right]dx$
$=\frac{1}{2}\int \left[\mathrm{sin}\left(x\right)+\mathrm{sin}\left(5x\right)\right]dx$
$=\frac{1}{2}\left[-\mathrm{cos}x-\frac{\mathrm{cos}5x}{5}\right]+C$
Hence,
$\int \mathrm{sin}3x\mathrm{cos}2xdx=\frac{1}{2}\left[-\mathrm{cos}x-\frac{\mathrm{cos}5x}{5}\right]+C$

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?