Find integral. \int (-8\cos x-7\sin x)dx

Coroware

Coroware

Answered question

2021-11-16

Find integral.
(8cosx7sinx)dx

Answer & Explanation

Abel Maynard

Abel Maynard

Beginner2021-11-17Added 19 answers

Step 1
The given integral (8cosx7sinx)dx can be evaluated as,
(8cosx7sinx)dx=8(cosx)dx7(sinx)dx
=8sinx7(cosx)+C
=7cosx8sinx+C
Step 2
Hence, (8cosx7sinx)dx=7cosx8sinx+C.
Susan Yang

Susan Yang

Beginner2021-11-18Added 20 answers

Step 1: Expand.
8cosx7sinxdx
Step 2: Use Sum Rule: f(x)+g(x)dx=f(x)dx+g(x)dx.
8cosxdx7sinxdx
Step 3: Use Constant Factor Rule:cf(x)dx=cf(x)dx.
8cosxdx7sinxdx
Step 4: Use Trigonometric Integration: the integral of cosxissinx.
8sinx7sinxdx
Step 5: Use Constant Factor Rule: cf(x)dx=cf(x)dx.
8sinx7sinxdx
Step 6: Use Trigonometric Integration: the integral of sinx is cosx.
8sinx+7cosx
Step 7: Add constant.
8sinx+7cosx+C

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?