Evaluate the integral: \sec x(\sec x + \tan x) dx

Yolanda Jorge

Yolanda Jorge

Answered question

2021-11-20

Evaluate the integral:
secx(secx+tanx)dx

Answer & Explanation

soniarus7x

soniarus7x

Beginner2021-11-21Added 17 answers

Step 1
To find the below integral.
secx(secx+tanx)dx
Step 2
Using u substitution method
u=secx+tanx
du=(sec2x+tanxsecx)dx
du=secx(secx+tanx)dx
du=usecxdx
secxdx=duu
secx(secx+tanx)dx=uduu
secx(secx+tanx)dx=du
secx(secx+tanx)dx=u+C
secx(secx+tanx)dx=secx+tanx+C
George Morin

George Morin

Beginner2021-11-22Added 13 answers

Step 1: Expand.
sec2x+secxtanxdx
Step 2: Use Sum Rule: f(x)+g(x)dx=f(x)dx+g(x)dx.
sec2xdx+secxtanxdx
Step 3: The derivative of tanx is sec2x.
tanx+secxtanxdx
Step 4: The derivative of secx is secxtanx.
tanx+secx
Step 5: Add constant.
tanx+secx+C

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?