Evaluate the indefinite integral. \int (\cot x)\ln (\sin x)dx

Pretoto4o

Pretoto4o

Answered question

2021-11-19

Evaluate the indefinite integral.
(cotx)ln(sinx)dx

Answer & Explanation

Lounctirough

Lounctirough

Beginner2021-11-20Added 14 answers

Step 1 
We must assess the integral
(cotx)ln(sinx) dx ...(1) 
let cotx=zlog(sinx) dx = dz  
Step 2 
substituting it in the equation (1) we get 
z dz  
integrating it we get 
[z22] 
adding z's value, we obtain
[cot2x2] 
therefore the answer of (cotx)ln(sinx) dx  is cot2x2

Marlene Broomfield

Marlene Broomfield

Beginner2021-11-21Added 15 answers

Step 1: Remove parentheses.
cotxln(sinx)dx
Step 2: Use Integration by Parts on cotxln(sinx)dx
Let u=ln(sinx),dv=cotx,du=cosxsinxdx,v=ln(sinx)
Step 3: Substitute the above into uvvdu.
ln(sinx)2ln(sinx)cosxsinxdx
Step 4: Use Integration by Substitution on ln(sinx)cosxsinxdx.
lnuudu
Step 6: Use Integration by Substitution.
Let w=lnu,dw=1udu
Step 7: Using w and dw above, rewrite lnuudu.
wdw
Step 8: Use Power Rule: xndx=xn+1n+1+C.
w22
Step 9: Substitute w=lnu back into the original integral.
lnu22
Step 10: Substitute u=sinx back into the original integral.
ln(sinx)22
Step 11: Rewrite the integral with the completed substitution.
ln(sinx)22
Step 12: Add constant.
ln(sinx)22+C

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?