vestirme4

## Answered question

2021-03-09

Compute ${\int }_{0}^{2}\frac{1}{x-1}dx$

### Answer & Explanation

Adnaan Franks

Skilled2021-03-10Added 92 answers

, which lies between the upper and lower integration bounds.
To determine if the integral is convergent, you must then split the integral at x=1, and then use limits to evaluate:
${\int }_{0}^{2}\frac{1}{x-1}dx$
$={\int }_{0}^{1}\frac{1}{x-1}dx+{\int }_{1}^{2}\frac{1}{x-1}dx$ (Rewrite as a sum)
$\underset{m\to {1}^{-}}{lim}{\int }_{0}^{m}\frac{1}{x-1}dx+\underset{m\to {1}^{-}}{lim}{\int }_{n}^{2}\frac{1}{x-1}dx$ (Rewrite using limits)
$\underset{m\to {1}^{-}}{lim}\left(\mathrm{ln}|x-1|\right)\left({\mid }_{0}^{m}\right)+\underset{m\to {1}^{-}}{lim}\left(\mathrm{ln}|x-1|\right){\mid }_{n}^{2}$ (Integrate)
$\underset{m\to {1}^{-}}{lim}\left(\mathrm{ln}|m-1|-\mathrm{ln}|0-1|\right)+\underset{m\to {1}^{-}}{lim}\left(\mathrm{ln}|2-1|-\mathrm{ln}|n-1|\right)$ (Evaluate)
$\underset{m\to {1}^{-}}{lim}\left(\mathrm{ln}|m-1|-\mathrm{ln}1\right)+\underset{m\to {1}^{-}}{lim}\left(\mathrm{ln}1-\mathrm{ln}|n-1|\right)$ (Simplify)
$\underset{m\to {1}^{-}}{lim}\left(\mathrm{ln}|m-1|\right)+\underset{m\to {1}^{-}}{lim}\left(\mathrm{ln}|n-1|\right)$ (Simplify using $\mathrm{ln}1=0$)
$\underset{m\to {1}^{-}}{lim}\left(\mathrm{ln}|m-1|\right)\phantom{\rule{1em}{0ex}}\text{and}\phantom{\rule{1em}{0ex}}\underset{m\to {1}^{-}}{lim}\left(\mathrm{ln}|n-1|\right)$ aren't finite since $\mathrm{ln}0$ is not defined.Therefore, the integral is divergent.

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?