∫138x(2x+4)*3dx

Answered question

2022-05-08

138x(2x+4)*3dx

Answer & Explanation

star233

star233

Skilled2022-05-14Added 403 answers

138x(2x+4)3dx

Simplify.

Move 3 to the left of 2x+4.

138x3(2x+4)dx

Cancel the common factor of 8 and 2x+4.

134x3(x+2)dx

Since 43 is constant with respect to x, move 43 out of the integral.

4313xx+2dx

Divide x by x+2.

43131-2x+2dx

Split the single integral into multiple integrals.

43(13dx+13-2x+2dx)

Apply the constant rule.

43(x]13+13-2x+2dx)

Since -1 is constant with respect to x, move -1 out of the integral.

43(x]13-132x+2dx)

Since 22 is constant with respect to x, move 2 out of the integral.

43(x]13-(2131x+2dx))

Multiply 2 by -1.

43(x]13-2131x+2dx)

Let u=x+2. Then du=dx. Rewrite using u and du.

43(x]13-2351udu)

The integral of 1u with respect to u is ln(|u|).

43(x]13-2(ln(|u|)]35))

Substitute and simplify.

Evaluate x at 3 and at 1.

43((3)-1-2(ln(|u|)]35))

Evaluate ln(|u|) at 5 and at 3.

43((3)-1-2((ln(|5|))-ln(|3|)))

Subtract 1 from 3.

43(2-2(ln(|5|)-ln(|3|)))

Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy).

43(2-2ln(|5||3|))

Simplify.

The absolute value is the distance between a number and zero. The distance between 00 and 5 is 5.

43(2-2ln(5|3|))

The absolute value is the distance between a number and zero. The distance between 0 and 3 is 3.

43(2-2ln(53))

Apply the distributive property.

432+43(-2ln(53))

Multiply 432.

83+43(-2ln(53))

Multiply 43(-2ln(53)).

83+-8ln(53)3

Move the negative in front of the fraction.

83-8ln(53)3

The result:

83-8ln(53)3

 


 

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?