Integrate − <mrow> 3 x 3 </mrow>

Oberhangaps5z

Oberhangaps5z

Answered question

2022-05-13

Integrate 3 x 3 2  + 3 x + 3 2 cos ( 3 x ) 1 with respect to x.

Answer & Explanation

Gallichi5mtwt

Gallichi5mtwt

Beginner2022-05-14Added 18 answers

Split the single integral into multiple integrals.

-3x32dx+3xdx+32cos(3x)dx+-1dx

Since -1 is constant with respect to x, move -1 out of the integral.

-3x32dx+3xdx+32cos(3x)dx+-1dx

Since 32 is constant with respect to x, move 32 out of the integral.

-(32x3dx)+3xdx+32cos(3x)dx+-1dx

By the Power Rule, the integral of x3 with respect to x is 14x4.

-32(14x4+C)+3xdx+32cos(3x)dx+-1dx

Since 3 is constant with respect to x, move 3 out of the integral.

-32(14x4+C)+3xdx+32cos(3x)dx+-1dx

By the Power Rule, the integral of x with respect to x is 12x2.

-32(14x4+C)+3(12x2+C)+32cos(3x)dx+-1dx

Since 32 is constant with respect to x, move 32 out of the integral.

-32(14x4+C)+3(12x2+C)+32cos(3x)dx+-1dx

Let u=3x. Then du=3dx, so 13du=dx. Rewrite using u and du.

-32(14x4+C)+3(12x2+C)+32cos(u)13du+-1dx

Simplify.

-32(14x4+C)+3(x22+C)+32cos(u)3du+-1dx

Since 13 is constant with respect to u, move 13 out of the integral.

-32(14x4+C)+3(x22+C)+32(13cos(u)du)+-1dx

Simplify.

-32(14x4+C)+3(x22+C)+12cos(u)du+-1dx

The integral of cos(u) with respect to u is sin(u).

-32(14x4+C)+3(x22+C)+12(sin(u)+C)+-1dx

Apply the constant rule.

-32(14x4+C)+3(x22+C)+12(sin(u)+C)-x+C

Simplify.

-3x48+3x22+sin(u)2-x+C

Replace all occurrences of u with 3x.

-3x48+3x22+sin(3x)2-x+C

Reorder terms.

-38x4+32x2+12sin(3x)-x+C

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?