Integrate 1 <mrow> 2 t </mrow> − 5 2 sin &#x206

britesoulusjhq

britesoulusjhq

Answered question

2022-05-11

Integrate 1 2 t 5 2 sin ( 2 t ) + 1 2 sin ( 3 t ) 2 with respect to t.

Answer & Explanation

Semaj Stark

Semaj Stark

Beginner2022-05-12Added 17 answers

Split the single integral into multiple integrals.

12tdt+-52sin(2t)dt+12sin(3t)dt+-2dt

Since 12 is constant with respect to t, move 12 out of the integral.

121tdt+-52sin(2t)dt+12sin(3t)dt+-2dt

The integral of 1t with respect to t is ln(|t|).

12(ln(|t|)+C)+-52sin(2t)dt+12sin(3t)dt+-2dt

Since -52 is constant with respect to t, move -52 out of the integral.

12(ln(|t|)+C)-52sin(2t)dt+12sin(3t)dt+-2dt

Let u1=2t. Then du1=2dt, so 12du1=dt. Rewrite using u1 and du1.

12(ln(|t|)+C)-52sin(u1)12du1+12sin(3t)dt+-2dt

Combine sin(u1) and 12.

12(ln(|t|)+C)-52sin(u1)2du1+12sin(3t)dt+-2dt

Since 12 is constant with respect to u1, move 12 out of the integral.

12(ln(|t|)+C)-52(12sin(u1)du1)+12sin(3t)dt+-2dt

Simplify.

12(ln(|t|)+C)-54sin(u1)du1+12sin(3t)dt+-2dt

The integral of sin(u1) with respect to u1 is -cos(u1).

12(ln(|t|)+C)-54(-cos(u1)+C)+12sin(3t)dt+-2dt

Since 12 is constant with respect to t, move 12 out of the integral.

12(ln(|t|)+C)-54(-cos(u1)+C)+12sin(3t)dt+-2dt

Let u2=3t. Then du2=3dt, so 13du2=dt. Rewrite using u2 and du2.

12(ln(|t|)+C)-54(-cos(u1)+C)+12sin(u2)13du2+-2dt

Combine sin(u2) and 13.

12(ln(|t|)+C)-54(-cos(u1)+C)+12sin(u2)3du2+-2dt

Since 13 is constant with respect to u2, move 13 out of the integral.

12(ln(|t|)+C)-54(-cos(u1)+C)+12(13sin(u2)du2)+-2dt

Simplify.

12(ln(|t|)+C)-54(-cos(u1)+C)+16sin(u2)du2+-2dt

The integral of sin(u2) with respect to u2 is -cos(u2).

12(ln(|t|)+C)-54(-cos(u1)+C)+16(-cos(u2)+C)+-2dt

Apply the constant rule.

12(ln(|t|)+C)-54(-cos(u1)+C)+16(-cos(u2)+C)-2t+C

Simplify.

ln(|t|)2+5cos(u1)4-cos(u2)6-2t+C

Substitute back in for each integration substitution variable.

ln(|t|)2+5cos(2t)4-cos(3t)6-2t+C

Reorder terms.

12ln(|t|)+54cos(2t)-16cos(3t)-2t+C

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?