Integrate x 2 &#xFEFF; </mrow> − 5 x + <mrow>

Fescoisyncsibgyp8b

Fescoisyncsibgyp8b

Answered question

2022-04-10

Integrate x 2  5 x + cos ( x ) 2 3 cos ( 3 x ) with respect to x.

Answer & Explanation

Bumanro5mv

Bumanro5mv

Beginner2022-04-11Added 9 answers

Split the single integral into multiple integrals.

x2dx+-5xdx+cos(x)2dx+-3cos(3x)dx

Since 12 is constant with respect to x, move 12 out of the integral.

12xdx+-5xdx+cos(x)2dx+-3cos(3x)dx

By the Power Rule, the integral of x with respect to x is 12x2.

12(12x2+C)+-5xdx+cos(x)2dx+-3cos(3x)dx

Since -1 is constant with respect to x, move -1 out of the integral.

12(12x2+C)-5xdx+cos(x)2dx+-3cos(3x)dx

Since 5 is constant with respect to x, move 5 out of the integral.

12(12x2+C)-(51xdx)+cos(x)2dx+-3cos(3x)dx

Multiply 5 by -1.

12(12x2+C)-51xdx+cos(x)2dx+-3cos(3x)dx

The integral of 1x with respect to x is ln(|x|).

12(12x2+C)-5(ln(|x|)+C)+cos(x)2dx+-3cos(3x)dx

Since 12 is constant with respect to x, move 12 out of the integral.

12(12x2+C)-5(ln(|x|)+C)+12cos(x)dx+-3cos(3x)dx

The integral of cos(x) with respect to x is sin(x).

12(12x2+C)-5(ln(|x|)+C)+12(sin(x)+C)+-3cos(3x)dx

Since -3 is constant with respect to x, move -3 out of the integral.

12(12x2+C)-5(ln(|x|)+C)+12(sin(x)+C)-3cos(3x)dx

Let u=3x. Then du=3dx, so 13du=dx. Rewrite using u and du.

12(12x2+C)-5(ln(|x|)+C)+12(sin(x)+C)-3cos(u)13du

Combine cos(u) and 13.

12(12x2+C)-5(ln(|x|)+C)+12(sin(x)+C)-3cos(u)3du

Since 13 is constant with respect to u, move 13 out of the integral.

12(12x2+C)-5(ln(|x|)+C)+12(sin(x)+C)-3(13cos(u)du)

Simplify.

12(12x2+C)-5(ln(|x|)+C)+12(sin(x)+C)-cos(u)du

The integral of cos(u) with respect to u is sin(u).

12(12x2+C)-5(ln(|x|)+C)+12(sin(x)+C)-(sin(u)+C)

Simplify.

x24-5ln(|x|)+sin(x)2-sin(u)+C

Replace all occurrences of u with 3x.

x24-5ln(|x|)+sin(x)2-sin(3x)+C

Reorder terms.

14x2-5ln(|x|)+12sin(x)-sin(3x)+C

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?