Find the integral: − 3 <mrow> 2 t 4

Kazeljkaml5n9y

Kazeljkaml5n9y

Answered question

2022-05-12

Find the integral: ( 3 2 t 4 + t 2 2 + 1 2 t sin ( 2 t ) )  d t.

Answer & Explanation

notemilyu1208

notemilyu1208

Beginner2022-05-13Added 20 answers

Remove parentheses.

-32t4+t22+12t-sin(2t)dt

Split the single integral into multiple integrals.

-32t4dt+t22dt+12tdt+-sin(2t)dt

Since -1 is constant with respect to t, move -1 out of the integral.

-32t4dt+t22dt+12tdt+-sin(2t)dt

Since 32 is constant with respect to t, move 32 out of the integral.

-(321t4dt)+t22dt+12tdt+-sin(2t)dt

Apply basic rules of exponents.

-32t-4dt+t22dt+12tdt+-sin(2t)dt

By the Power Rule, the integral of t-4 with respect to t is -13t-3.

-32(-13t-3+C)+t22dt+12tdt+-sin(2t)dt

Since 12 is constant with respect to t, move 12 out of the integral.

-32(-13t-3+C)+12t2dt+12tdt+-sin(2t)dt

By the Power Rule, the integral of t2 with respect to t is 13t3.

-32(-13t-3+C)+12(13t3+C)+12tdt+-sin(2t)dt

Since 12 is constant with respect to t, move 12 out of the integral.

-32(-13t-3+C)+12(13t3+C)+121tdt+-sin(2t)dt

The integral of 1t with respect to t is ln(|t|).

-32(-13t-3+C)+12(13t3+C)+12(ln(|t|)+C)+-sin(2t)dt

Since -1 is constant with respect to t, move -1 out of the integral.

-32(-13t-3+C)+12(13t3+C)+12(ln(|t|)+C)-sin(2t)dt

Let u=2t. Then du=2dt, so 12du=dt. Rewrite using u and du.

-32(-13t-3+C)+12(13t3+C)+12(ln(|t|)+C)-sin(u)12du

Combine sin(u) and 12.

-32(-13t-3+C)+12(13t3+C)+12(ln(|t|)+C)-sin(u)2du

Since 12 is constant with respect to u, move 12 out of the integral.

-32(-13t-3+C)+12(13t3+C)+12(ln(|t|)+C)-(12sin(u)du)

The integral of sin(u) with respect to u is -cos(u).

-32(-13t-3+C)+12(13t3+C)+12(ln(|t|)+C)-12(-cos(u)+C)

Simplify.

12t3+t36+ln(|t|)2+cos(u)2+C

Replace all occurrences of u with 2t.

12t3+t36+ln(|t|)2+cos(2t)2+C

Reorder terms.

12t3+16t3+12ln(|t|)+12cos(2t)+C

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?