Integrate − t 3 </mrow> 2 &#xFEFF; </mr

pevljivuaosyc

pevljivuaosyc

Answered question

2022-05-11

Integrate t 3 2  + 5 2 t 2 + 2 t 3 cos ( t ) with respect to t.

Answer & Explanation

Brennan Frye

Brennan Frye

Beginner2022-05-12Added 20 answers

Split the single integral into multiple integrals.

-t32dt+52t2dt+2tdt+-3cos(t)dt

Since -1 is constant with respect to t, move -1 out of the integral.

-t32dt+52t2dt+2tdt+-3cos(t)dt

Since 12 is constant with respect to t, move 12 out of the integral.

-(12t3dt)+52t2dt+2tdt+-3cos(t)dt

By the Power Rule, the integral of t3 with respect to t is 14t4.

-12(14t4+C)+52t2dt+2tdt+-3cos(t)dt

Since 52 is constant with respect to t, move 52 out of the integral.

-12(14t4+C)+521t2dt+2tdt+-3cos(t)dt

Apply basic rules of exponents.

-12(14t4+C)+52t-2dt+2tdt+-3cos(t)dt

By the Power Rule, the integral of tt-2 with respect to t is -t-1.

-12(14t4+C)+52(-t-1+C)+2tdt+-3cos(t)dt

Since 2 is constant with respect to t, move 2 out of the integral.

-12(14t4+C)+52(-t-1+C)+2tdt+-3cos(t)dt

By the Power Rule, the integral of t with respect to t is 12t2.

-12(14t4+C)+52(-t-1+C)+2(12t2+C)+-3cos(t)dt

Since -3 is constant with respect to t, move -3 out of the integral.

-12(14t4+C)+52(-t-1+C)+2(12t2+C)-3cos(t)dt

The integral of cos(t) with respect to t is sin(t).

-12(14t4+C)+52(-t-1+C)+2(12t2+C)-3(sin(t)+C)

Simplify.

-t48-52t+t2-3sin(t)+C

Reorder terms.

-18t4-52t+t2-3sin(t)+C

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?