Compute − 3 x 3 </mrow> + 3 <

Justine Webster

Justine Webster

Answered question

2022-04-10

Compute ( 3 x 3 + 3 2 x 3 sin ( 3 x ) 5 2 cos ( 2 x ) )  d x.

Answer & Explanation

nelppeazy9v3ie

nelppeazy9v3ie

Beginner2022-04-11Added 22 answers

Remove parentheses.

-3x3+32x-3sin(3x)-52cos(2x)dx

Split the single integral into multiple integrals.

-3x3dx+32xdx+-3sin(3x)dx+-52cos(2x)dx

Since -1 is constant with respect to x, move -1 out of the integral.

-3x3dx+32xdx+-3sin(3x)dx+-52cos(2x)dx

Since 3 is constant with respect to x, move 3 out of the integral.

-(31x3dx)+32xdx+-3sin(3x)dx+-52cos(2x)dx

Simplify the expression.

-3x-3dx+32xdx+-3sin(3x)dx+-52cos(2x)dx

By the Power Rule, the integral of x-3 with respect to x is -12x-2.

-3(-12x-2+C)+32xdx+-3sin(3x)dx+-52cos(2x)dx

Simplify.

 

-3(-12x2+C)+32xdx+-3sin(3x)dx+-52cos(2x)dx

Since 32 is constant with respect to x, move 32 out of the integral.

-3(-12x2+C)+321xdx+-3sin(3x)dx+-52cos(2x)dx

The integral of 1x with respect to x is ln(|x|).

-3(-12x2+C)+32(ln(|x|)+C)+-3sin(3x)dx+-52cos(2x)dx

Since -3 is constant with respect to x, move -3 out of the integral.

-3(-12x2+C)+32(ln(|x|)+C)-3sin(3x)dx+-52cos(2x)dx

Let u1=3x. Then du1=3dx, so 13du1=dx. Rewrite using u1 and du1.

-3(-12x2+C)+32(ln(|x|)+C)-3sin(u1)13du1+-52cos(2x)dx

Combine sin(u1) and 13.

-3(-12x2+C)+32(ln(|x|)+C)-3sin(u1)3du1+-52cos(2x)dx

Since 13 is constant with respect to u1, move 13 out of the integral.

-3(-12x2+C)+32(ln(|x|)+C)-3(13sin(u1)du1)+-52cos(2x)dx

Simplify.

-3(-12x2+C)+32(ln(|x|)+C)-sin(u1)du1+-52cos(2x)dx

The integral of sin(u1) with respect to u1 is -cos(u1).

-3(-12x2+C)+32(ln(|x|)+C)-(-cos(u1)+C)+-52cos(2x)dx

Since -52 is constant with respect to x, move -52 out of the integral.

-3(-12x2+C)+32(ln(|x|)+C)-(-cos(u1)+C)-52cos(2x)dx

Let u2=2x. Then du2=2dx, so 12du2=dx. Rewrite using u2 and du2.

-3(-12x2+C)+32(ln(|x|)+C)-(-cos(u1)+C)-52cos(u2)12du2

Combine cos(u2) and 12.

-3(-12x2+C)+32(ln(|x|)+C)-(-cos(u1)+C)-52cos(u2)2du2

Since 12 is constant with respect to u2, move 12 out of the integral.

-3(-12x2+C)+32(ln(|x|)+C)-(-cos(u1)+C)-52(12cos(u2)du2)

Simplify.

-3(-12x2+C)+32(ln(|x|)+C)-(-cos(u1)+C)-54cos(u2)du2

The integral of cos(u2) with respect to u2 is sin(u2).

-3(-12x2+C)+32(ln(|x|)+C)-(-cos(u1)+C)-54(sin(u2)+C)

Simplify.

32x2+3ln(|x|)2+cos(u1)-54sin(u2)+C

Substitute back in for each integration substitution variable.

32x2+3ln(|x|)2+cos(3x)-54sin(2x)+C

Reorder terms.

32x2+32ln(|x|)+cos(3x)-54sin(2x)+C

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?