Integrate − 3 x 2 </mrow> − 2 x

rynosluv101wopds

rynosluv101wopds

Answered question

2022-05-12

Integrate 3 x 2 2 x 2  sin ( 2 x ) + 3 with respect to x.

Answer & Explanation

Ayaan Gonzalez

Ayaan Gonzalez

Beginner2022-05-13Added 15 answers

Split the single integral into multiple integrals.

-3x2dx+-2x2dx+-sin(2x)dx+3dx

Since -3 is constant with respect to x, move -3 out of the integral.

-3x2dx+-2x2dx+-sin(2x)dx+3dx

By the Power Rule, the integral of x2 with respect to x is 13x3.

-3(13x3+C)+-2x2dx+-sin(2x)dx+3dx

Since -1 is constant with respect to x, move -1 out of the integral.

-3(13x3+C)-2x2dx+-sin(2x)dx+3dx

Since 2 is constant with respect to x, move 2 out of the integral.

-3(13x3+C)-(21x2dx)+-sin(2x)dx+3dx

Simplify the expression.

-3(x33+C)-2x-2dx+-sin(2x)dx+3dx

By the Power Rule, the integral of x-2 with respect to x is -x-1.

-3(x33+C)-2(-x-1+C)+-sin(2x)dx+3dx

Since -1 is constant with respect to x, move -1 out of the integral.

-3(x33+C)-2(-x-1+C)-sin(2x)dx+3dx

Let u=2x. Then du=2dx, so 12du=dx. Rewrite using u and du.

-3(x33+C)-2(-x-1+C)-sin(u)12du+3dx

Combine sin(u) and 12.

-3(x33+C)-2(-x-1+C)-sin(u)2du+3dx

Since 12 is constant with respect to u, move 12 out of the integral.

-3(x33+C)-2(-x-1+C)-(12sin(u)du)+3dx

The integral of sin(u) with respect to u is -cos(u).

-3(x33+C)-2(-x-1+C)-12(-cos(u)+C)+3dx

Apply the constant rule.

-3(x33+C)-2(-x-1+C)-12(-cos(u)+C)+3x+C

Simplify.

-x3+2x+cos(u)2+3x+C

Replace all occurrences of u with 2x.

-x3+2x+cos(2x)2+3x+C

Reorder terms.

-x3+2x+12cos(2x)+3x+C

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?