Integrate − 3 x 2 </mrow> + 1 <mrow

othereyeshmt4l

othereyeshmt4l

Answered question

2022-04-10

Integrate 3 x 2 + 1 2 x + 3 2 cos ( 2 x ) + 3 with respect to x.

Answer & Explanation

Kaylin Barry

Kaylin Barry

Beginner2022-04-11Added 11 answers

Split the single integral into multiple integrals.

-3x2dx+12xdx+32cos(2x)dx+3dx

Since -1 is constant with respect to x, move -1 out of the integral.

-3x2dx+12xdx+32cos(2x)dx+3dx

Since 3 is constant with respect to x, move 3 out of the integral.

-(31x2dx)+12xdx+32cos(2x)dx+3dx

Simplify the expression.

-3x-2dx+12xdx+32cos(2x)dx+3dx

By the Power Rule, the integral of x-2 with respect to x is -x-1.

-3(-x-1+C)+12xdx+32cos(2x)dx+3dx

Since 12 is constant with respect to x, move 12 out of the integral.

-3(-x-1+C)+121xdx+32cos(2x)dx+3dx

The integral of 1x with respect to x is ln(|x|).

-3(-x-1+C)+12(ln(|x|)+C)+32cos(2x)dx+3dx

Since 32 is constant with respect to x, move 32 out of the integral.

-3(-x-1+C)+12(ln(|x|)+C)+32cos(2x)dx+3dx

Let u=2x. Then du=2dx, so 12du=dx. Rewrite using u and du.

-3(-x-1+C)+12(ln(|x|)+C)+32cos(u)12du+3dx

Combine cos(u) and 12.

-3(-x-1+C)+12(ln(|x|)+C)+32cos(u)2du+3dx

Since 12 is constant with respect to u, move 12 out of the integral.

-3(-x-1+C)+12(ln(|x|)+C)+32(12cos(u)du)+3dx

Simplify.

-3(-x-1+C)+12(ln(|x|)+C)+34cos(u)du+3dx

The integral of cos(u) with respect to u is sin(u).

-3(-x-1+C)+12(ln(|x|)+C)+34(sin(u)+C)+3dx

Apply the constant rule.

-3(-x-1+C)+12(ln(|x|)+C)+34(sin(u)+C)+3x+C

Simplify.

3x+ln(|x|)2+3sin(u)4+3x+C

Replace all occurrences of u with 2x.

3x+ln(|x|)2+3sin(2x)4+3x+C

Reorder terms.

3x+12ln(|x|)+34sin(2x)+3x+C

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?