Integrate 3 <mrow> 2 t 3 </mrow>

lasquiyas5loaa

lasquiyas5loaa

Answered question

2022-05-11

Integrate 3 2 t 3  5 2 t 2 + 2 t + cos ( 3 t ) with respect to t.

Answer & Explanation

rotgelb7kjxw

rotgelb7kjxw

Beginner2022-05-12Added 16 answers

Split the single integral into multiple integrals.

32t3dt+-52t2dt+2tdt+cos(3t)dt

Since 32 is constant with respect to t, move 32 out of the integral.

321t3dt+-52t2dt+2tdt+cos(3t)dt

Apply basic rules of exponents.

32t-3dt+-52t2dt+2tdt+cos(3t)dt

By the Power Rule, the integral of t-3 with respect to t is -12t-2.

32(-12t-2+C)+-52t2dt+2tdt+cos(3t)dt

Since -1 is constant with respect to t, move -1 out of the integral.

32(-12t-2+C)-52t2dt+2tdt+cos(3t)dt

Since 52 is constant with respect to t, move 52 out of the integral.

32(-12t-2+C)-(521t2dt)+2tdt+cos(3t)dt

Apply basic rules of exponents.

32(-12t-2+C)-52t-2dt+2tdt+cos(3t)dt

By the Power Rule, the integral of t-2 with respect to t is -t-1.

32(-12t-2+C)-52(-t-1+C)+2tdt+cos(3t)dt

Since 2 is constant with respect to t, move 2 out of the integral.

32(-12t-2+C)-52(-t-1+C)+2tdt+cos(3t)dt

By the Power Rule, the integral of t with respect to t is 12t2.

32(-12t-2+C)-52(-t-1+C)+2(12t2+C)+cos(3t)dt

Let u=3t. Then du=3dt, so 13du=dt. Rewrite using u and du.

32(-12t-2+C)-52(-t-1+C)+2(12t2+C)+cos(u)13du

Simplify.

32(-12t-2+C)-52(-t-1+C)+2(t22+C)+cos(u)3du

Since 13 is constant with respect to u, move 13 out of the integral.

32(-12t-2+C)-52(-t-1+C)+2(t22+C)+13cos(u)du

The integral of cos(u) with respect to u is sin(u).

32(-12t-2+C)-52(-t-1+C)+2(t22+C)+13(sin(u)+C)

Simplify.

-34t2+52t+t2+13sin(u)+C

Replace all occurrences of u with 3t.

-34t2+52t+t2+13sin(3t)+C

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?