Find the integral: − 1 <mrow> 2 t 2

Peia6tvsr

Peia6tvsr

Answered question

2022-04-10

Find the integral: ( 1 2 t 2 + 5 2 t + 3 2 sin ( 2 t ) 3 cos ( t ) 2 + 1 ) d t.

Answer & Explanation

Gallichi5mtwt

Gallichi5mtwt

Beginner2022-04-11Added 18 answers

Remove parentheses.

-12t2+52t+32sin(2t)-3cos(t)2+1dt

Split the single integral into multiple integrals.

-12t2dt+52tdt+32sin(2t)dt+-3cos(t)2dt+dt

Since -1 is constant with respect to t, move -1 out of the integral.

-12t2dt+52tdt+32sin(2t)dt+-3cos(t)2dt+dt

Since 12 is constant with respect to t, move 12 out of the integral.

-(121t2dt)+52tdt+32sin(2t)dt+-3cos(t)2dt+dt

Apply basic rules of exponents.

-12t-2dt+52tdt+32sin(2t)dt+-3cos(t)2dt+dt

By the Power Rule, the integral of t-2 with respect to t is -t-1.

-12(-t-1+C)+52tdt+32sin(2t)dt+-3cos(t)2dt+dt

Since 52 is constant with respect to t, move 52 out of the integral.

-12(-t-1+C)+521tdt+32sin(2t)dt+-3cos(t)2dt+dt

The integral of 1t with respect to t is ln(|t|).

-12(-t-1+C)+52(ln(|t|)+C)+32sin(2t)dt+-3cos(t)2dt+dt

Since 32 is constant with respect to t, move 32 out of the integral.

-12(-t-1+C)+52(ln(|t|)+C)+32sin(2t)dt+-3cos(t)2dt+dt

Let u=2t. Then du=2dt, so 12du=dt. Rewrite using u and du.

-12(-t-1+C)+52(ln(|t|)+C)+32sin(u)12du+-3cos(t)2dt+dt

Combine sin(u) and 12.

-12(-t-1+C)+52(ln(|t|)+C)+32sin(u)2du+-3cos(t)2dt+dt

Since 12 is constant with respect to u, move 12 out of the integral.

-12(-t-1+C)+52(ln(|t|)+C)+32(12sin(u)du)+-3cos(t)2dt+dt

Simplify.

-12(-t-1+C)+52(ln(|t|)+C)+34sin(u)du+-3cos(t)2dt+dt

The integral of sin(u) with respect to u is -cos(u).

-12(-t-1+C)+52(ln(|t|)+C)+34(-cos(u)+C)+-3cos(t)2dt+dt

Since -1 is constant with respect to t, move -1 out of the integral.

-12(-t-1+C)+52(ln(|t|)+C)+34(-cos(u)+C)-3cos(t)2dt+dt

Since 32 is constant with respect to t, move 32 out of the integral.

-12(-t-1+C)+52(ln(|t|)+C)+34(-cos(u)+C)-(32cos(t)dt)+dt

The integral of cos(t) with respect to t is sin(t).

-12(-t-1+C)+52(ln(|t|)+C)+34(-cos(u)+C)-32(sin(t)+C)+dt

Apply the constant rule.

-12(-t-1+C)+52(ln(|t|)+C)+34(-cos(u)+C)-32(sin(t)+C)+t+C

Simplify.

12t+5ln(|t|)2-3cos(u)4-3sin(t)2+t+C

Replace all occurrences of u with 2t.

12t+5ln(|t|)2-3cos(2t)4-3sin(t)2+t+C

Reorder terms.

12t+52ln(|t|)-34cos(2t)-32sin(t)+t+C

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?