Integrate 3 x 2 </mrow> &#xFEFF; </mrow> − 3 <mr

Jace Wright

Jace Wright

Answered question

2022-05-11

Integrate 3 x 2  3 2 x 2 3 sin ( 3 x ) + 1 2 with respect to x.

Answer & Explanation

Ari Jacobs

Ari Jacobs

Beginner2022-05-12Added 10 answers

Split the single integral into multiple integrals.

3x2dx+-32x2dx+-3sin(3x)dx+12dx

Since 3 is constant with respect to x, move 3 out of the integral.

3x2dx+-32x2dx+-3sin(3x)dx+12dx

By the Power Rule, the integral of x2 with respect to x is 13x3.

3(13x3+C)+-32x2dx+-3sin(3x)dx+12dx

Since -1 is constant with respect to x, move -1 out of the integral.

3(13x3+C)-32x2dx+-3sin(3x)dx+12dx

Since 32 is constant with respect to x, move 32 out of the integral.

3(13x3+C)-(321x2dx)+-3sin(3x)dx+12dx

Simplify the expression.

3(x33+C)-32x-2dx+-3sin(3x)dx+12dx

By the Power Rule, the integral of x-2 with respect to x is -x-1.

3(x33+C)-32(-x-1+C)+-3sin(3x)dx+12dx

Since -3 is constant with respect to x, move -3 out of the integral.

3(x33+C)-32(-x-1+C)-3sin(3x)dx+12dx

Let u=3x. Then du=3dx, so 13du=dx. Rewrite using uu and dduu.

3(x33+C)-32(-x-1+C)-3sin(u)13du+12dx

Combine sin(u) and 13.

3(x33+C)-32(-x-1+C)-3sin(u)3du+12dx

Since 13 is constant with respect to u, move 13 out of the integral.

3(x33+C)-32(-x-1+C)-3(13sin(u)du)+12dx

Simplify.

3(x33+C)-32(-x-1+C)-sin(u)du+12dx

The integral of sin(u) with respect to u is -cos(u).

3(x33+C)-32(-x-1+C)-(-cos(u)+C)+12dx

Apply the constant rule.

3(x33+C)-32(-x-1+C)-(-cos(u)+C)+12x+C

Simplify.

x3+32x+cos(u)+12x+C

Replace all occurrences of u with 3x.

x3+32x+cos(3x)+12x+C

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?