Find the integral: <mrow> 5 t 3 </mrow

Merati4tmjn

Merati4tmjn

Answered question

2022-04-10

Find the integral: ( 5 t 3 2 + 3 t 3 sin ( t ) 2 2 cos ( 2 t ) + 2 ) d t.

Answer & Explanation

Oswaldo Rosales

Oswaldo Rosales

Beginner2022-04-11Added 16 answers

Remove parentheses.

5t32+3t3-sin(t)2-2cos(2t)+2dt

Split the single integral into multiple integrals.

5t32dt+3t3dt+-sin(t)2dt+-2cos(2t)dt+2dt

Since 52 is constant with respect to t, move 52 out of the integral.

52t3dt+3t3dt+-sin(t)2dt+-2cos(2t)dt+2dt

By the Power Rule, the integral of t3 with respect to t is 14t4.

52(14t4+C)+3t3dt+-sin(t)2dt+-2cos(2t)dt+2dt

Since 3 is constant with respect to t, move 3 out of the integral.

52(14t4+C)+31t3dt+-sin(t)2dt+-2cos(2t)dt+2dt

Apply basic rules of exponents.

52(14t4+C)+3t-3dt+-sin(t)2dt+-2cos(2t)dt+2dt

By the Power Rule, the integral of t-3 with respect to t is -12t-2.

52(14t4+C)+3(-12t-2+C)+-sin(t)2dt+-2cos(2t)dt+2dt

Simplify.

52(14t4+C)+3(-12t2+C)+-sin(t)2dt+-2cos(2t)dt+2dt

Since -1 is constant with respect to t, move -1 out of the integral.

52(14t4+C)+3(-12t2+C)-sin(t)2dt+-2cos(2t)dt+2dt

Since 12 is constant with respect to t, move 12 out of the integral.

52(14t4+C)+3(-12t2+C)-(12sin(t)dt)+-2cos(2t)dt+2dt

The integral of sin(t) with respect to t is -cos(t).

52(14t4+C)+3(-12t2+C)-12(-cos(t)+C)+-2cos(2t)dt+2dt

Since -2 is constant with respect to t, move -2 out of the integral.

52(14t4+C)+3(-12t2+C)-12(-cos(t)+C)-2cos(2t)dt+2dt

Let u=2t. Then du=2dt, so 12du=dt. Rewrite using u and du.

52(14t4+C)+3(-12t2+C)-12(-cos(t)+C)-2cos(u)12du+2dt

Combine cos(u) and 12.

52(14t4+C)+3(-12t2+C)-12(-cos(t)+C)-2cos(u)2du+2dt

Since 12 is constant with respect to u, move 12 out of the integral.

52(14t4+C)+3(-12t2+C)-12(-cos(t)+C)-2(12cos(u)du)+2dt

Simplify.

52(14t4+C)+3(-12t2+C)-12(-cos(t)+C)-cos(u)du+2dt

The integral of cos(u) with respect to u is sin(u).

52(14t4+C)+3(-12t2+C)-12(-cos(t)+C)-(sin(u)+C)+2dt

Apply the constant rule.

52(14t4+C)+3(-12t2+C)-12(-cos(t)+C)-(sin(u)+C)+2t+C

Simplify.

5t48-32t2+cos(t)2-sin(u)+2t+C

Replace all occurrences of u with 2t.

5t48-32t2+cos(t)2-sin(2t)+2t+C

Reorder terms.

58t4-32t2+12cos(t)-sin(2t)+2t+C

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?