Integrate <mrow> 5 x 3 </mrow> </

tuehanhyd8ml

tuehanhyd8ml

Answered question

2022-05-11

Integrate 5 x 3 2 1 2 x 2 + 3 x 2 + cos ( 2 x ) 2 cos ( 3 x ) with respect to x.

Answer & Explanation

pomastitxz27r

pomastitxz27r

Beginner2022-05-12Added 16 answers

Split the single integral into multiple integrals.

5x32dx+-12x2dx+3x2dx+cos(2x)dx+-2cos(3x)dx

Since 52 is constant with respect to x, move 52 out of the integral.

52x3dx+-12x2dx+3x2dx+cos(2x)dx+-2cos(3x)dx

By the Power Rule, the integral of x3 with respect to x is 14x4.

52(14x4+C)+-12x2dx+3x2dx+cos(2x)dx+-2cos(3x)dx

Since -1 is constant with respect to x, move -1 out of the integral.

52(14x4+C)-12x2dx+3x2dx+cos(2x)dx+-2cos(3x)dx

Since 12 is constant with respect to x, move 12 out of the integral.

52(14x4+C)-(121x2dx)+3x2dx+cos(2x)dx+-2cos(3x)dx

Apply basic rules of exponents.

52(14x4+C)-12x-2dx+3x2dx+cos(2x)dx+-2cos(3x)dx

By the Power Rule, the integral of x-2 with respect to x is -x-1.

52(14x4+C)-12(-x-1+C)+3x2dx+cos(2x)dx+-2cos(3x)dx

Since 32 is constant with respect to x, move 32 out of the integral.

52(14x4+C)-12(-x-1+C)+32xdx+cos(2x)dx+-2cos(3x)dx

By the Power Rule, the integral of x with respect to x is 12x2.

52(14x4+C)-12(-x-1+C)+32(12x2+C)+cos(2x)dx+-2cos(3x)dx

Let u1=2x. Then du1=2dx, so 12du1=dx. Rewrite using u1 and du1.

52(14x4+C)-12(-x-1+C)+32(12x2+C)+cos(u1)12du1+-2cos(3x)dx

Combine cos(u1) and 12.

52(14x4+C)-12(-x-1+C)+32(12x2+C)+cos(u1)2du1+-2cos(3x)dx

Since 12 is constant with respect to u1, move 12 out of the integral.

52(14x4+C)-12(-x-1+C)+32(12x2+C)+12cos(u1)du1+-2cos(3x)dx

The integral of cos(u1) with respect to u1 is sin(u1).

52(14x4+C)-12(-x-1+C)+32(12x2+C)+12(sin(u1)+C)+-2cos(3x)dx

Since -2 is constant with respect to x, move -2 out of the integral.

52(14x4+C)-12(-x-1+C)+32(12x2+C)+12(sin(u1)+C)-2cos(3x)dx

Let u2=3x. Then du2=3dx, so 13du2=dx. Rewrite using u2 and du2.

52(14x4+C)-12(-x-1+C)+32(12x2+C)+12(sin(u1)+C)-2cos(u2)13du2

Combine cos(u2) and 13.

52(14x4+C)-12(-x-1+C)+32(12x2+C)+12(sin(u1)+C)-2cos(u2)3du2

Since 13 is constant with respect to u2, move 13 out of the integral.

52(14x4+C)-12(-x-1+C)+32(12x2+C)+12(sin(u1)+C)-2(13cos(u2)du2)

Simplify.

52(14x4+C)-12(-x-1+C)+32(12x2+C)+12(sin(u1)+C)-23cos(u2)du2

The integral of cos(u2) with respect to u2 is sin(u2).

52(14x4+C)-12(-x-1+C)+32(12x2+C)+12(sin(u1)+C)-23(sin(u2)+C)

Simplify.

5x48+12x+3x24+sin(u1)2-23sin(u2)+C

Substitute back in for each integration substitution variable.

5x48+12x+3x24+sin(2x)2-23sin(3x)+C

Reorder terms.

58x4+12x+143x2+12sin(2x)-23sin(3x)+C

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?