Evaluate 5 2 cos &#x2061;<!-- ⁡ 4 x <mo stretchy="false">) ln &#

Daphne Fry

Daphne Fry

Answered question

2022-05-11

Evaluate 5 2 cos ( 4 x ) ln ( sin ( 4 x ) + 1 ) d x.

Answer & Explanation

Emmy Sparks

Emmy Sparks

Beginner2022-05-12Added 17 answers

Simplify.

5cos(4x)ln(sin(4x)+1)2dx

Since 52 is constant with respect to x, move 52 out of the integral.

52cos(4x)ln(sin(4x)+1)dx

Integrate by parts using the formula udv=uv-vdu, where u=ln(sin(4x)+1) and dv=cos(4x).

52(ln(sin(4x)+1)(14sin(4x))-14sin(4x)4cos(4x)1+sin(4x)dx)

Simplify.

52(ln(sin(4x)+1)sin(4x)4-sin(4x)cos(4x)1+sin(4x)dx)

Let u2=sin(4x). Then du2=4cos(4x)dx14du2=cos(4x)dx. Rewrite using u2 and du2.

52(ln(sin(4x)+1)sin(4x)4-u21+u214du2)

52(ln(sin(4x)+1)sin(4x)4-u24(1+u2)du2)

Since 14 is constant with respect to u2, move 14 out of the integral.

52(ln(sin(4x)+1)sin(4x)4-(14u21+u2du2))

Reorder 1 and u2.

52(ln(sin(4x)+1)sin(4x)4-14u2u2+1du2)

Divide u2 by u2+1.

52(ln(sin(4x)+1)sin(4x)4-141-1u2+1du2)

Split the single integral into multiple integrals.

52(ln(sin(4x)+1)sin(4x)4-14(du2+-1u2+1du2))

Apply the constant rule.

52(ln(sin(4x)+1)sin(4x)4-14(u2+C+-1u2+1du2))

Since -1 is constant with respect to u2, move -1 out of the integral.

52(ln(sin(4x)+1)sin(4x)4-14(u2+C-1u2+1du2))

Let u3=u2+1. Then du3=du2. Rewrite using u3 and du3.

52(ln(sin(4x)+1)sin(4x)4-14(u2+C-1u3du3))

The integral of 31u3 with respect to u3 is ln(|u3|).

52(ln(sin(4x)+1)sin(4x)4-14(u2+C-(ln(|u3|)+C)))

Simplify.

52(ln(sin(4x)+1)sin(4x)4-u24+ln(|u3|)4)+C

Substitute back in for each integration substitution variable.

52(ln(sin(4x)+1)sin(4x)4-sin(4x)4+ln(|sin(4x)+1|)4)+C

Simplify.

5(sin(4x)ln(sin(4x)+1)-sin(4x)+ln(|sin(4x)+1|))8+C

Reorder terms.

58(sin(4x)ln(sin(4x)+1)-sin(4x)+ln(|sin(4x)+1|))+C

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?