Compute x 3 </mrow> 2 − 2

Spencer Lutz

Spencer Lutz

Answered question

2022-05-11

Compute ( x 3 2 2 x 3 + 3 sin ( x ) 2 + 2 cos ( 3 x ) )  d x.

Answer & Explanation

exorteygrdh

exorteygrdh

Beginner2022-05-12Added 16 answers

Remove parentheses.

x32-2x3+3sin(x)2+2cos(3x)dx

Split the single integral into multiple integrals.

x32dx+-2x3dx+3sin(x)2dx+2cos(3x)dx

Since 12 is constant with respect to x, move 12 out of the integral.

12x3dx+-2x3dx+3sin(x)2dx+2cos(3x)dx

By the Power Rule, the integral of x3 with respect to x is 14x4.

12(14x4+C)+-2x3dx+3sin(x)2dx+2cos(3x)dx

Since -1 is constant with respect to x, move -1 out of the integral.

12(14x4+C)-2x3dx+3sin(x)2dx+2cos(3x)dx

Since 2 is constant with respect to x, move 2 out of the integral.

12(14x4+C)-(21x3dx)+3sin(x)2dx+2cos(3x)dx

Simplify the expression.

12(14x4+C)-2x-3dx+3sin(x)2dx+2cos(3x)dx

By the Power Rule, the integral of x-3 with respect to x is -12x-2.

12(14x4+C)-2(-12x-2+C)+3sin(x)2dx+2cos(3x)dx

Simplify.

12(14x4+C)-2(-12x2+C)+3sin(x)2dx+2cos(3x)dx

Since 32 is constant with respect to x, move 32 out of the integral.

12(14x4+C)-2(-12x2+C)+32sin(x)dx+2cos(3x)dx

The integral of sin(x) with respect to x is -cos(x).

12(14x4+C)-2(-12x2+C)+32(-cos(x)+C)+2cos(3x)dx

Since 2 is constant with respect to x, move 2 out of the integral.

12(14x4+C)-2(-12x2+C)+32(-cos(x)+C)+2cos(3x)dx

Let u=3x. Then du=3dx, so 13du=dx. Rewrite using u and du.

12(14x4+C)-2(-12x2+C)+32(-cos(x)+C)+2cos(u)13du

Combine cos(u) and 13.

12(14x4+C)-2(-12x2+C)+32(-cos(x)+C)+2cos(u)3du

Since 13 is constant with respect to u, move 13 out of the integral.

12(14x4+C)-2(-12x2+C)+32(-cos(x)+C)+2(13cos(u)du)

Combine 13 and 2.

12(14x4+C)-2(-12x2+C)+32(-cos(x)+C)+23cos(u)du

The integral of cos(u) with respect to u is sin(u).

12(14x4+C)-2(-12x2+C)+32(-cos(x)+C)+23(sin(u)+C)

Simplify.

x48+1x2-3cos(x)2+23sin(u)+C

Replace all occurrences of u with 3x.

x48+1x2-3cos(x)2+23sin(3x)+C

Reorder terms.

18x4+1x2-32cos(x)+23sin(3x)+C

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?