Find the integral: − <msqrt> t 2 </mrow> + t

pevljivuaosyc

pevljivuaosyc

Answered question

2022-04-10

Find the integral: t 2 + t 5 d t.

Answer & Explanation

Madelyn Lynch

Madelyn Lynch

Beginner2022-04-11Added 15 answers

Since -1 is constant with respect to t, move -1 out of the integral.

-t2+t-5dt

Complete the square.

-(t+12)2-214dt

Let u=t+12. Then du=dt. Rewrite using u and du.

-u2-214du

To write u2 as a fraction with a common denominator, multiply by 44.

-u244-214du

Simplify terms.

-u24-214du

Move 4 to the left of u2.

-4u2-214du

Rewrite 4u2-214 as (12)2(4u2-21).

-(12)2(4u2-21)du

Simplify terms.

-4u2-212du

Since 12 is constant with respect to u, move 12 out of the integral.

-(124u2-21du)

Let u=212sec(t1), where -π2t1π2. Then du=21sec(t1)tan(t1)2dt1. Note that since -π2t1π221sec(t1)tan(t1)2 is positive.

-124(212sec(t1))2-2121sec(t1)tan(t1)2dt1

Simplify terms.

-1221sec(t1)tan2(t1)2dt1

Since 212 is constant with respect to t1, move 212 out of the integral.

-12(212sec(t1)tan2(t1)dt1)

Simplify.

-214sec(t1)tan2(t1)dt1

Raise sec(t1) to the power of 1.

-214sec1(t1)tan2(t1)dt1

Using the Pythagorean Identity, rewrite tan2(t1) as -1+sec2(t1).

-214sec1(t1)(-1+sec2(t1))dt1

Simplify terms.

-214-sec(t1)+sec3(t1)dt1

Split the single integral into multiple integrals.

-214(-sec(t1)dt1+sec3(t1)dt1)

Since -1 is constant with respect to t1, move -1 out of the integral.

-214(-sec(t1)dt1+sec3(t1)dt1)

The integral of sec(t1) with respect to t1 is ln(|sec(t1)+tan(t1)|).

-214(-(ln(|sec(t1)+tan(t1)|)+C)+sec3(t1)dt1)

Factor sec(t1) out of sec3(t1).

-214(-(ln(|sec(t1)+tan(t1)|)+C)+sec(t1)sec2(t1)dt1)

Integrate by parts using the formula udv=uv-vdu, where u=sec(t1) and dv=sec2(t1).

-214(-(ln(|sec(t1)+tan(t1)|)+C)+sec(t1)tan(t1)-tan(t1)(sec(t1)tan(t1))dt1)

Raise tan(t1) to the power of 1.

-214(-(ln(|sec(t1)+tan(t1)|)+C)+sec(t1)tan(t1)-tan1(t1)tan(t1)sec(t1)dt1)

Raise tan(t1) to the power of 1.

-214(-(ln(|sec(t1)+tan(t1)|)+C)+sec(t1)tan(t1)-tan1(t1)tan1(t1)sec(t1)dt1)

Use the power rule aman=am+n to combine exponents.

-214(-(ln(|sec(t1)+tan(t1)|)+C)+sec(t1)tan(t1)-tan(t1)1+1sec(t1)dt1)

Simplify the expression.

-214(-(ln(|sec(t1)+tan(t1)|)+C)+sec(t1)tan(t1)-sec(t1)tan2(t1)dt1)

Using the Pythagorean Identity, rewrite tan2(t1) as -1+sec2(t1).

-214(-(ln(|sec(t1)+tan(t1)|)+C)+sec(t1)tan(t1)-sec(t1)(-1+sec2(t1))dt1)

Simplify by multiplying through.

-214(-(ln(|sec(t1)+tan(t1)|)+C)+sec(t1)tan(t1)--1sec(t1)+sec(t1)(sec(t1)sec(t1))dt1)

Raise sec(t1) to the power of 1.

-214(-(ln(|sec(t1)+tan(t1)|)+C)+sec(t1)tan(t1)--1sec(t1)+sec1(t1)sec(t1)sec(t1)dt1)

Raise sec(t1) to the power of 1.

-214(-(ln(|sec(t1)+tan(t1)|)+C)+sec(t1)tan(t1)--1sec(t1)+sec1(t1)sec1(t1)sec(t1)dt1)

Use the power rule aman=am+n to combine exponents.

-214(-(ln(|sec(t1)+tan(t1)|)+C)+sec(t1)tan(t1)--1sec(t1)+sec(t1)1+1sec(t1)dt1)

Add 1 and 1.

-214(-(ln(|sec(t1)+tan(t1)|)+C)+sec(t1)tan(t1)--1sec(t1)+sec2(t1)sec(t1)dt1)

Raise sec(t1) to the power of 1.

-214(-(ln(|sec(t1)+tan(t1)|)+C)+sec(t1)tan(t1)--1sec(t1)+sec2(t1)sec1(t1)dt1)

Use the power rule aman=am+n to combine exponents.

-214(-(ln(|sec(t1)+tan(t1)|)+C)+sec(t1)tan(t1)--1sec(t1)+sec(t1)2+1dt1)

Add 2 and 1.

-214(-(ln(|sec(t1)+tan(t1)|)+C)+sec(t1)tan(t1)--1sec(t1)+sec3(t1)dt1)

Split the single integral into multiple integrals.

-214(-(ln(|sec(t1)+tan(t1)|)+C)+sec(t1)tan(t1)-(-1sec(t1)dt1+sec3(t1)dt1))

Since -1 is constant with respect to t1, move -1 out of the integral.

-214(-(ln(|sec(t1)+tan(t1)|)+C)+sec(t1)tan(t1)-(-sec(t1)dt1+sec3(t1)dt1))

The integral of sec(t1) with respect to t1 is ln(|sec(t1)+tan(t1)|).

-214(-(ln(|sec(t1)+tan(t1)|)+C)+sec(t1)tan(t1)-(-(ln(|sec(t1)+tan(t1)|)+C)+sec3(t1)dt1))

Simplify by multiplying through.

-214(-(ln(|sec(t1)+tan(t1)|)+C)+sec(t1)tan(t1)+1(ln(|sec(t1)+tan(t1)|)+C)-sec3(t1)dt1)

Solving for sec3(t1)dt1, we find that sec3(t1)dt1 sec(t1)tan(t1)+1(ln(|sec(t1)+tan(t1)|)+C)2.

-214(-(ln(|sec(t1)+tan(t1)|)+C)+sec(t1)tan(t1)+1(ln(|sec(t1)+tan(t1)|)+C)2+C)

Multiply ln(|sec(t1)+tan(t1)|)+C by 1.

-214(-(ln(|sec(t1)+tan(t1)|)+C)+sec(t1)tan(t1)+ln(|sec(t1)+tan(t1)|)+C2+C)

Simplify.

-214-ln(|sec(t1)+tan(t1)|)2+sec(t1)tan(t1)+ln(|sec(t1)+tan(t1)|)2+C

Simplify.

-21(sec(t1)tan(t1)-ln(|sec(t1)+tan(t1)|))8+C

Substitute back in for each integration substitution variable.

-21(sec(arcsec(2(t+12)21))tan(arcsec(2(t+12)21))-ln(|sec(arcsec(2(t+12)21))+tan(arcsec(2(t+12)21))|))8+C

Simplify.

-21(sec(arcsec(2t+121))tan(arcsec(2t+121))-ln(|sec(arcsec(2t+121))+tan(arcsec(2t+121))|))8+C

Reorder terms.

-218(sec(arcsec(121(2t+1)))tan(arcsec(121(2t+1)))-ln(|sec(arcsec(121(2t+1)))+tan(arcsec(121(2t+1)))|))+C


 

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?