Evaluate 1 x 4 </mrow> − 1 <mro

datomerki8a5yj

datomerki8a5yj

Answered question

2022-04-10

Evaluate ( 1 x 4 1 2 x 2 5 x 2 3 sin ( 2 x ) )  d x.

Answer & Explanation

Maeve Holloway

Maeve Holloway

Beginner2022-04-11Added 25 answers

Remove parentheses.

1x4-12x2-5x2-3sin(2x)dx

Split the single integral into multiple integrals.

1x4dx+-12x2dx+-5x2dx+-3sin(2x)dx

Apply basic rules of exponents.

x-4dx+-12x2dx+-5x2dx+-3sin(2x)dx

By the Power Rule, the integral of x-4 with respect to x is -13x-3.

-13x-3+C+-12x2dx+-5x2dx+-3sin(2x)dx

Since -1 is constant with respect to x, move -1 out of the integral.

-13x-3+C-12x2dx+-5x2dx+-3sin(2x)dx

Since 12 is constant with respect to x, move 12 out of the integral.

-13x-3+C-(121x2dx)+-5x2dx+-3sin(2x)dx

Apply basic rules of exponents.

-13x-3+C-12x-2dx+-5x2dx+-3sin(2x)dx

By the Power Rule, the integral of x-2 with respect to x is -x-1.

-13x-3+C-12(-x-1+C)+-5x2dx+-3sin(2x)dx

Since -1 is constant with respect to x, move -1 out of the integral.

-13x-3+C-12(-x-1+C)-5x2dx+-3sin(2x)dx

Since 52 is constant with respect to x, move 52 out of the integral.

-13x-3+C-12(-x-1+C)-(52xdx)+-3sin(2x)dx

By the Power Rule, the integral of x with respect to x is 12x2.

-13x-3+C-12(-x-1+C)-52(12x2+C)+-3sin(2x)dx

Since -3 is constant with respect to x, move -3 out of the integral.

-13x-3+C-12(-x-1+C)-52(12x2+C)-3sin(2x)dx

Let u=2x. Then du=2dx, so 12du=dx. Rewrite using u and du.

-13x-3+C-12(-x-1+C)-52(12x2+C)-3sin(u)12du

Combine sin(u) and 12.

-13x-3+C-12(-x-1+C)-52(12x2+C)-3sin(u)2du

Since 12 is constant with respect to u, move 12 out of the integral.

-13x-3+C-12(-x-1+C)-52(12x2+C)-3(12sin(u)du)

Simplify.

-13x-3+C-12(-x-1+C)-52(12x2+C)-32sin(u)du

The integral of sin(u) with respect to u is -cos(u).

-13x-3+C-12(-x-1+C)-52(12x2+C)-32(-cos(u)+C)

Simplify.

-13x3+12x-5x24+3cos(u)2+C

Replace all occurrences of u with 2x.

-13x3+12x-5x24+3cos(2x)2+C

Reorder terms.

-13x3+12x-54x2+32cos(2x)+C

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?