For <mstyle displaystyle="true"> f ( t )

adocidasiaqxm

adocidasiaqxm

Answered question

2022-05-11

For f ( t ) = ( sin 2 t , t π - 2 ) what is the distance between f ( π 4 ) and f ( π ) ?

Answer & Explanation

Lara Alvarez

Lara Alvarez

Beginner2022-05-12Added 14 answers

Step 1
Find the two points by plugging in π 4 and π for t in the point f ( t ) :
f ( π 4 ) = ( sin 2 ( π 4 ) , π 4 π - 2 )
f ( π 4 ) = ( ( 2 2 ) 2 , 1 4 - 2 )
f ( π 4 ) = ( 2 4 , 1 4 - 8 4 )
f ( π 4 ) = ( 1 2 , - 7 4 )
And
f ( π ) = ( sin 2 ( π ) , π π - 2 )
f ( π ) = ( 0 2 , 1 - 2 )
f ( π ) = ( 0 , - 1 )
So, we need to find the distance between the points ( 1 2 , - 7 4 ) and ( 0 , - 1 ) using the distance formula, which states that the distance between ( x 1 , y 1 ) and ( x 2 , y 2 ) is
d = ( x 2 - x 1 ) 2 + ( y 2 - y 1 ) 2
Thus the distance we want is
d = ( 0 - 1 2 ) 2 + ( - 1 - ( - 7 4 ) ) 2
d = ( - 1 2 ) 2 + ( - 1 + 7 4 ) 2
d = ( - 1 2 ) 2 + ( 3 4 ) 2
d = 1 4 + 9 16
d = 13 16
d = 13 4

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?