Proof of Cauchy's Beta Integral int_(-infty)^(infty) (dt)/((1+it)^x(1-it)^y)

drogaid1d8

drogaid1d8

Answered question

2022-11-11

The Cauchy's Beta Integral is given by
d t ( 1 + i t ) x ( 1 i t ) y = π 2 2 x y Γ ( x + y 1 ) Γ ( x ) Γ ( y )

Answer & Explanation

barene55d

barene55d

Beginner2022-11-12Added 23 answers

Answer:
d t ( 1 + i t ) x ( 1 i t ) y = 2 2 x y π Γ ( x + y 1 ) Γ ( x ) Γ ( y ) :   ?
d t ( 1 + i t ) x ( 1 i t ) y = i i i d t ( 1 + t ) x ( 1 t ) y = i 1 d t | 1 + t | x e i π x ( 1 t ) y + i 1 d t | 1 + t | x e i π x ( 1 t ) y = i e i π x 1 d t | 1 t | x ( 1 + t ) y i e i π x 1 d t | 1 t | x ( 1 + t ) y = i ( e i π x e i π x ) 1 ( t 1 ) x ( 1 + t ) y d t = 2 1 y sin ( π x ) 0 t x ( 1 + t / 2 ) y d t = 2 2 x y sin ( π x ) 0 t x ( 1 + t ) y d t
With ξ 1 1 + t t = 1 ξ 1
d t ( 1 + i t ) x ( 1 i t ) y = 2 2 x y sin ( π x ) 1 0 ( 1 ξ 1 ) x ξ y ( d ξ ξ 2 ) = 2 2 x y sin ( π x ) 1 0 ξ x + y 2 ( 1 ξ ) x d ξ = 2 2 x y sin ( π x )   B ( x + y 1 , x + 1 ) Beta Function = 2 2 x y sin ( π x )   Γ ( x + y 1 ) Γ ( x + 1 ) Γ ( y ) Γ s :   Gamma Functions

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?