Shirley Conrad

2023-03-06

Can you multiply a $3x2$ and $2x2$ matrix?

gelo1368m6

Beginner2023-03-07Added 5 answers

Multiplication of matrix :

Let a matrix of order $m\times n$ and another matrix $n\times q$ when the number of columns in the first matrix equals the number of rows in the second matrix, the matrix can be multiplied.

Here we have to multiply $3\times 2$ matrix and $2\times 2$ matrix, which is possible and the resultant matrix will be $3\times 2$.

Let us understand with the help of an example.

Let $A=\left[\begin{array}{cc}0& 7\\ 3& 6\\ -2& 0\end{array}\right]$ and $B=\left[\begin{array}{cc}3& -4\\ 0& 12\end{array}\right]$

then, $\mathrm{AB}=\left[\begin{array}{cc}0\times 3+0\times 7& -4\times 0+7\times 12\\ 3\times 3+6\times 0& -4\times 3+6\times 12\\ -2\times 3+(-2)\times 0& -2\times (-4)+12\times 0\end{array}\right]$$=\left[\begin{array}{cc}0& 84\\ 9& 60\\ -6& 8\end{array}\right]$

Therefore, In this way we can multiply the matrix.

Let a matrix of order $m\times n$ and another matrix $n\times q$ when the number of columns in the first matrix equals the number of rows in the second matrix, the matrix can be multiplied.

Here we have to multiply $3\times 2$ matrix and $2\times 2$ matrix, which is possible and the resultant matrix will be $3\times 2$.

Let us understand with the help of an example.

Let $A=\left[\begin{array}{cc}0& 7\\ 3& 6\\ -2& 0\end{array}\right]$ and $B=\left[\begin{array}{cc}3& -4\\ 0& 12\end{array}\right]$

then, $\mathrm{AB}=\left[\begin{array}{cc}0\times 3+0\times 7& -4\times 0+7\times 12\\ 3\times 3+6\times 0& -4\times 3+6\times 12\\ -2\times 3+(-2)\times 0& -2\times (-4)+12\times 0\end{array}\right]$$=\left[\begin{array}{cc}0& 84\\ 9& 60\\ -6& 8\end{array}\right]$

Therefore, In this way we can multiply the matrix.

An object moving in the xy-plane is acted on by a conservative force described by the potential energy function

where$U(x,y)=\alpha (\frac{1}{{x}^{2}}+\frac{1}{{y}^{2}})$ is a positive constant. Derivative an expression for the force expressed terms of the unit vectors$\alpha$ and$\overrightarrow{i}$ .$\overrightarrow{j}$ I need to find a unique description of Nul A, namely by listing the vectors that measure the null space

?

$A=\left[\begin{array}{ccccc}1& 5& -4& -3& 1\\ 0& 1& -2& 1& 0\\ 0& 0& 0& 0& 0\end{array}\right]$T must be a linear transformation, we assume. Can u find the T standard matrix.$T:{\mathbb{R}}^{2}\to {\mathbb{R}}^{4},T\left({e}_{1}\right)=(3,1,3,1)\text{}{\textstyle \phantom{\rule{1em}{0ex}}}\text{and}{\textstyle \phantom{\rule{1em}{0ex}}}\text{}T\left({e}_{2}\right)=(-5,2,0,0),\text{}where\text{}{e}_{1}=(1,0)\text{}{\textstyle \phantom{\rule{1em}{0ex}}}\text{and}{\textstyle \phantom{\rule{1em}{0ex}}}\text{}{e}_{2}=(0,1)$

?Find a nonzero vector orthogonal to the plane through the points P, Q, and R. and area of the triangle PQR

Consider the points below

P(1,0,1) , Q(-2,1,4) , R(7,2,7).

a) Find a nonzero vector orthogonal to the plane through the points P,Q and R.

b) Find the area of the triangle PQR.Consider two vectors A=3i - 1j and B = - i - 5j, how do you calculate A - B?

Let vectors A=(1,0,-3) ,B=(-2,5,1) and C=(3,1,1), how do you calculate 2A-3(B-C)?

What is the projection of $<6,5,3>$ onto $<2,-1,8>$?

What is the dot product of $<1,-4,5>$ and $<-5,7,3>$?

Which of the following is not a vector quantity?

A)Weight;

B)Nuclear spin;

C)Momentum;

D)Potential energyHow to find all unit vectors normal to the plane which contains the points $(0,1,1),(1,-1,0)$, and $(1,0,2)$?

What is a rank $1$ matrix?

How to find unit vector perpendicular to plane: 6x-2y+3z+8=0?

Can we say that a zero matrix is invertible?

How do I find the sum of three vectors?

How do I find the vertical component of a vector?