Tyra

2021-02-11

Let B be a

a) If B has three nonzero rows, then determine the form of B.

b) Suppose that a system of 4 linear equations in 2 unknowns has augmented matrix A, where A is a

Demonstrate that the system of equations is inconsistent.

oppturf

Skilled2021-02-12Added 94 answers

Let B be a

a) If B has three nonzero rows, then determine the form of B. According to Fig. 1.5 of Section 1.2,since the matrix is in reduced echelon form with three nonzero rows, then one of the four rows must: contain all zero entries. Hence, the form of B is

b)Suppose that a system of 4 linear equations in 2 unknowns has augmented matrix A, where A is a

Demonstrate that the system of equations is inconsistent.

Let the system of four linear in 2 unknowns

The augmented matrix of the system is

Since, A is a

Since, the system has 2 unknowns, then from the third reduced echelon form

Hence , the system has not solution.

An object moving in the xy-plane is acted on by a conservative force described by the potential energy function

where$U(x,y)=\alpha (\frac{1}{{x}^{2}}+\frac{1}{{y}^{2}})$ is a positive constant. Derivative an expression for the force expressed terms of the unit vectors$\alpha$ and$\overrightarrow{i}$ .$\overrightarrow{j}$ I need to find a unique description of Nul A, namely by listing the vectors that measure the null space

?

$A=\left[\begin{array}{ccccc}1& 5& -4& -3& 1\\ 0& 1& -2& 1& 0\\ 0& 0& 0& 0& 0\end{array}\right]$T must be a linear transformation, we assume. Can u find the T standard matrix.$T:{\mathbb{R}}^{2}\to {\mathbb{R}}^{4},T\left({e}_{1}\right)=(3,1,3,1)\text{}{\textstyle \phantom{\rule{1em}{0ex}}}\text{and}{\textstyle \phantom{\rule{1em}{0ex}}}\text{}T\left({e}_{2}\right)=(-5,2,0,0),\text{}where\text{}{e}_{1}=(1,0)\text{}{\textstyle \phantom{\rule{1em}{0ex}}}\text{and}{\textstyle \phantom{\rule{1em}{0ex}}}\text{}{e}_{2}=(0,1)$

?Find a nonzero vector orthogonal to the plane through the points P, Q, and R. and area of the triangle PQR

Consider the points below

P(1,0,1) , Q(-2,1,4) , R(7,2,7).

a) Find a nonzero vector orthogonal to the plane through the points P,Q and R.

b) Find the area of the triangle PQR.Consider two vectors A=3i - 1j and B = - i - 5j, how do you calculate A - B?

Let vectors A=(1,0,-3) ,B=(-2,5,1) and C=(3,1,1), how do you calculate 2A-3(B-C)?

What is the projection of $<6,5,3>$ onto $<2,-1,8>$?

What is the dot product of $<1,-4,5>$ and $<-5,7,3>$?

Which of the following is not a vector quantity?

A)Weight;

B)Nuclear spin;

C)Momentum;

D)Potential energyHow to find all unit vectors normal to the plane which contains the points $(0,1,1),(1,-1,0)$, and $(1,0,2)$?

What is a rank $1$ matrix?

How to find unit vector perpendicular to plane: 6x-2y+3z+8=0?

Can we say that a zero matrix is invertible?

How do I find the sum of three vectors?

How do I find the vertical component of a vector?