Let gamma = {t^2 - t + 1, t + 1, t^2 + 1} and beta = {t^2 + t + 4, 4t^2 - 3t + 2, 2t^2 + 3} be ordered bases for P_2(R).Find the change of coordinate matrix Q

e1s2kat26

e1s2kat26

Answered question

2020-11-01

Let γ={t2t+1,t+1,t2+1}andβ={t2+t+4,4t23t+2,2t2+3}beorderedbasesforP2(R). Find the change of coordinate matrix Q that changes β coordinates into γ coordinates

Answer & Explanation

i1ziZ

i1ziZ

Skilled2020-11-02Added 92 answers

Let t2+t+4=γ1(t2t+1)+γ2(t=1)+γ3(t2+1)
γ1+γ3=1,γ1+γ2=1,γ1+γ2+γ3=4
1+γ2=4
γ2=3
γ1+γ2=1γ1+3=1γ1=2
γ1+γ3=12+γ3=1γ3=1 Let 4t23r+2=γ1(t2t+1)+γ2(t+1)+γ3(t2+1)
γ1+γ3=4,γ1+γ2=3,γ1+γ2+γ3=2
4+γ2=2
γ2=2
γ1+γ2=3γ12=3γ1=1
γ1+γ3=41+γ3=4γ3=3 Let 2t2+3=γ1(t2t+1)+γ2(t+1)+γ3(t2+1)
γ1+γ3=2,γ1+γ2=0,γ1+γ2+γ3=3
2+γ2=3
γ2=1
γ1+γ2=0γ1+1=0Ri>owγ1=1
γ1+γ3=21+γ3=2γ3=1

Do you have a similar question?

Recalculate according to your conditions!

New Questions in Linear algebra

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?