 # Integral Problem Solving Made Easy: Learn with Examples

Recent questions in Integrals Davin Ellison 2023-03-14

## How many integers from 0 to 50, inclusive, have a remainder of 1 when divided by 3? kennisnetto1h 2023-02-18

## How to evaluate $\int \sqrt{{x}^{2}+14x}dx$? Golicamij1u 2023-02-08

## How to solve $\int \mathrm{tan}xdx$ ? acainzar3t2 2023-01-20

## How to evaluate the integral $\int s\cdot {2}^{s}ds$ ? Bradyn Cherry 2023-01-14

## What is the integral of $2x{e}^{x}$? Kayley Kidd 2023-01-06

## Integrate the function. $\int x{\mathrm{cos}}^{-1}xdx$ Arianna Pruitt 2023-01-04

## The value of $\underset{x\to {0}^{+}}{lim}\frac{{\mathrm{cos}}^{-1}\left(x\right)\cdot {\mathrm{sin}}^{-1}\left(x\right)}{x\left(1-{x}^{2}\right)}$, where [x] denotes the greatest integer $\le x$ isA) 0B) $\frac{\pi }{4}$C) $\frac{\pi }{2}$D) $\pi$ Anabella Gilbert 2022-12-23

## How to find the integral of $\int {\mathrm{sin}}^{3}xdx$ ? Richard Ferrell 2022-12-01

## How does graphite conduct electricity? Scott Valenzuela 2022-11-29

## Find the indefinite integral$\int {6}^{5x}dx$ armlanna1sK 2022-11-26

## Calculate the double integral. vegetatzz8s 2022-11-24

## $1.{\int }_{0}^{\pi }{\int }_{0}^{1}{\int }_{0}^{\sqrt{1-{y}^{2}}}y\mathrm{sin}dydx\phantom{\rule{0ex}{0ex}}\text{Find the above triple integral}$ Goundoubuf 2022-11-24

## How to prove that $\underset{-\pi /2}{\overset{\pi /2}{\int }}\frac{\mathrm{cos}\left(2x\right)}{{e}^{x}+1}=0$ Sophie Marks 2022-11-20

## Prove that ${\int }_{0}^{x}{\int }_{0}^{y}{\int }_{0}^{z}f\left(t\right)dtdzdy=\frac{1}{2}{\int }_{0}^{x}\left(x-t{\right)}^{2}f\left(t\right)dt$ sbrigynt7b 2022-11-20

## How to prove that${\int }_{0}^{1}\left(1+{x}^{n}{\right)}^{-1-1/n}dx={2}^{-1/n}$ Rihanna Bentley 2022-11-17

## This problem is giving me a headache.$\int \frac{4/7+\sqrt{x\sqrt{x}}}{\sqrt{4-x\left(1+{x}^{3/4}\right)}}\phantom{\rule{thinmathspace}{0ex}}dx$

Integral CalculusOpen question همس الهمس2022-11-16

##  Amy Bright 2022-11-14

## I need to evaluate the following integral:$\int {\int }_{G}\frac{\mathrm{ln}\left({x}^{2}+{y}^{2}\right)}{{x}^{2}+{y}^{2}}dxdy$ Kyler Oconnor 2022-11-14
## How to solve this integration: ${\int }_{0}^{1}\frac{{x}^{2012}}{1+{e}^{x}}dx$ Jadon Johnson 2022-11-13