Quantitative and Qualitative Study Design Examples

Recent questions in Study design
High school statisticsAnswered question
zakownikbj zakownikbj 2022-09-26

Question on designing a state observer for discrete time system
I came through this problem while studying for an exam in control systems:
Consider the following discrete time system
x ( k + 1 ) = A x ( k ) + b u ( k ) , y ( k ) = c x ( k )
where b = ( 0 , 1 ) T , c = ( 1 , 0 ) , A = [ 2 1 0 g ] for some g R
Find a feedback regulation (if there is any) of the form u ( k ) = K x ^ ( k ) where x ^ ( k ) is the country estimation vector that is produced via a linear complete-order state observer such that the nation of the system and the estimation blunders e ( k ) = x ( k ) x ^ ( k ) go to zero after a few finite time. layout the kingdom observer and the block diagram.
My method
it is clean that the eigenvalues of the machine are λ 1 = 2 , λ 2 = g (consequently it is not BIBO solid) and that the pair (A,b) is controllable for every fee of g, as nicely a the pair (A,c) is observable for all values of g. consequently we will shift the eigenvalues with the aid of deciding on a benefit matrix okay such that our device is strong, i.e. it has its eigenvalues inside the unit circle | z | = 1.
The state observer equation is
[ x ( k + 1 ) e ( k + 1 ) ] T = [ A b K B k O A L C ] [ x ( k ) e ( k ) ] T
With characteristic equation
χ ( z ) = | z I A + b K | | z I A + L C | = χ K ( z ) χ L ( z )
Also consider
K = [ k 1 k 2 k 3 k 4 ]
and let a = k 1 + k 3 , β = k 2 + k 4
Then χ K ( z ) = ( z 2 ) ( z + g + β ) + a.
So we can select some eigenvalues inside the unit circle and determine a , β in terms of g. Choosing e.g. λ 1 , 2 = ± 1 / 2 we get a = 3 g + 33 / 8 , β = 9 / 4 g , g R
Questions
I want to ask the following:
Is my approach correct? Should I select the eigenvalues myself since I am asked to design the observer or should I just solve the characteristic equation and impose | λ 1 , 2 | < 1?
Should I determine L matrix as well since the error must also vanish? (because it is not asked)

High school statisticsAnswered question
Janet Hart Janet Hart 2022-09-19

Euclid's view and Klein's view of Geometry and Associativity in Group
One common item in the have a look at of Euclidean geometry (Euclid's view) is "congruence" relation- specifically ""congruence of triangles"". We recognize that this congruence relation is an equivalence relation
Every triangle is congruent to itself
If triangle T 1 is congruent to triangle T 2 then T 2 is congruent to T 1 .
If T 1 is congruent to T 2 and T 2 is congruent to T 3 , then T 1 is congruent to T 3 .
This congruence relation (from Euclid's view) can be translated right into a relation coming from "organizations". allow I s o ( R 2 ) denote the set of all isometries of Euclidean plan (=distance maintaining maps from plane to itself). Then the above family members may be understood from Klein's view as:
∃ an identity element in I s o ( R 2 ) which takes every triangle to itself.
If g I s o ( R 2 ) is an element taking triangle T 1 to T 2 , then g 1 I s o ( R 2 ) which takes T 2 to T 1 .
If g I s o ( R 2 ) takes T 1 to T 2 and g I s o ( R 2 ) takes T 2 to T 3 then h g I s o ( R 2 ) which takes T 1 to T 3 .
One can see that in Klein's view, three axioms in the definition of group appear. But in the definition of "Group" there is "associativity", which is not needed in above formulation of Euclids view to Kleins view of grometry.
Question: What is the reason of introducing associativity in the definition of group? If we look geometry from Klein's view, does "associativity" of group puts restriction on geometry?

High school statisticsAnswered question
Modelfino0g Modelfino0g 2022-09-12

I'am finishing my undergraduate degree in pc technological know-how and in spite of having needed to take a few math training my math capacity is still quite terrible. I struggled plenty with it which I consider changed into due to missing a few portions of know-how that I had to realize and not seeing the large photograph. Now i'am reading neural networks and seems they require pretty some math(eg: the backpropagation set of rules uses the chain rule). some human beings say you do not need the maths but I don't think I will be capable of to understand neural networks absolutely with out it. or even if I could get away with i would in all likelihood nevertheless want the mathematics later on.
i have approximately a month that i'm able to dedicate completely to this quest and i am determined to examine linear algebra and multivariate calculus on this time frame. i can start with linear algebra (doesn't depend on calculus, proper?) they have got solutions so I ought to be able to easily tune my progress. I also observed this path from Berkeley Math a hundred and ten. Linear Algebra. It would not have video lectures but it has greater assignments with answers so i'm able to exercise even greater. As for textbooks MIT uses "advent to Linear Algebra, Fourth version, Gilbert Strang" and Berkeley uses "Linear Algebra through S.H. Friedberg,A.L. Insel and L.E. Spence,Fourth edition". people here appear to mention true matters approximately them.
I'am beginning this journey the following day. in the suggest time i'd want to get some advice. Do you've got any recommendation with the intention to make this method smoother? Are there every other assets I should recognize approximately?

When you are dealing with statistics and probability as a college student or need to solve some questions for your school class, the study design is an interesting concept to consider. The most important is to design and structure your statistical data. Start with the study design questions that must be answered by taking notes and explaining why you have taken a specific methodology. It will help you to narrow things down and avoid serving several statistical methods that can either make things simpler or even more complex. The study design example that you choose should serve as the template only as you should keep things unique! For example, when you need finding Y intercept