How to simplify 1/(1+sin x) + 1/(1-sin x)?

Bradyn Mclean

Bradyn Mclean

Answered question

2022-12-26

How to simplify 11+sinx+11sinx?

Answer & Explanation

inventivx64

inventivx64

Beginner2022-12-27Added 7 answers

Initially, multiply the first fraction by \(\displaystyle\text{}{1}-{\sin{{x}}}\text{}\) and the second by \(\displaystyle\text{}{1}+{\sin{{x}}}\text{}\)
\(\displaystyle{E}=\frac{{{1}-{\sin{{x}}}}}{{{\left({1}+{\sin{{x}}}\right)}\cdot{\left({1}-{\sin{{x}}}\right)}}}+\frac{{{1}+{\sin{{x}}}}}{{{\left({1}+{\sin{{x}}}\right)}\cdot{\left({1}-{\sin{{x}}}\right)}}}\)
\(\displaystyle{E}=\frac{{{1}\cancel{{-{\sin{{x}}}}}+{1}\cancel{{+{\sin{{x}}}}}}}{{{\left({1}+{\sin{{x}}}\right)}\cdot{\left({1}-{\sin{{x}}}\right)}}}=\frac{{2}}{{{\left({1}+{\sin{{x}}}\right)}\cdot{\left({1}-{\sin{{x}}}\right)}}}\)
Make use of the algebraic identity \(\displaystyle{a}^{{2}}-{b}^{{2}}={\left({a}-{b}\right)}{\left({a}+{b}\right)}\). In your case,
\(\displaystyle{a}={1}\) and
\(\displaystyle{b}={\sin{{x}}}\)
Consequently, the expression used as a denominator will change to
\(\displaystyle{\left({1}+{\sin{{x}}}\right)}\cdot{\left({1}-{\sin{{x}}}\right)}={1}^{{{2}}}-{\left({\sin{{x}}}\right)}^{{{2}}}={1}-{{\sin}^{{2}}{x}}\)
Hence, \(\displaystyle{E}\) will be
\(\displaystyle{E}=\frac{{2}}{{{1}-{{\sin}^{{2}}{x}}}}\)
Remember that \(\displaystyle{1}-{{\sin}^{{2}}{x}}={{\cos}^{{2}}{x}}\), so the final form of \(\displaystyle{E}\) will be
\(\displaystyle{E}={\color{green}{\frac{{2}}{{{\cos}^{{2}}{x}}}}}\)

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?