How to simplify cot theta sec theta sin theta?

Kristin Montgomery

Kristin Montgomery

Answered question

2023-01-04

How to simplify cotθsecθsinθ?

Answer & Explanation

Armeebildzku

Armeebildzku

Beginner2023-01-05Added 14 answers

Use the following two identities:
\(\displaystyle{\cot{\theta}}=\frac{{1}}{{\tan{\theta}}}=\frac{{1}}{{\frac{{\sin{\theta}}}{{\cos{\theta}}}}}=\frac{{\cos{\theta}}}{{\sin{\theta}}}\)
\(\displaystyle{\sec{\theta}}=\frac{{1}}{{\cos{\theta}}}\)
The expression is as follows:
\(\displaystyle{\color{white}=}{\cot{\theta}}{\sec{\theta}}{\sin{\theta}}\)
\(\displaystyle={\cot{\theta}}\cdot{\sec{\theta}}\cdot{\sin{\theta}}\)
\(\displaystyle=\frac{{\cos{\theta}}}{{\sin{\theta}}}\cdot\frac{{1}}{{\cos{\theta}}}\cdot{\sin{\theta}}\)
\(\displaystyle=\frac{{\color{red}\cancel{{\color{black}{\cos{\theta}}}}}}{{\sin{\theta}}}\cdot\frac{{1}}{{\color{red}\cancel{{\color{black}{\cos{\theta}}}}}}\cdot{\sin{\theta}}\)
\(\displaystyle=\frac{{1}}{{\sin{\theta}}}\cdot{1}\cdot{\sin{\theta}}\)
\(\displaystyle=\frac{{1}}{{\sin{\theta}}}\cdot{\sin{\theta}}\)
\(\displaystyle=\frac{{1}}{{\color{red}\cancel{{\color{black}{\sin{\theta}}}}}}\cdot{\color{red}\cancel{{\color{black}{\sin{\theta}}}}}\)
\(\displaystyle={1}\)

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?