How to find the exact value of tan(pi/3)?

Kadyn Acevedo

Kadyn Acevedo

Answered question

2023-01-08

How to find the exact value of tan(pi/3)?

Answer & Explanation

sobrevenilac

sobrevenilac

Beginner2023-01-09Added 8 answers

This fundamental trigonometric identity can be used:
\(\displaystyle{\tan{\theta}}=\frac{{\sin{\theta}}}{{\cos{\theta}}}\)
Here's a reference triangle with our \(\displaystyle\angle\theta\):
Since we know \(\displaystyle{\sin{{\left(\frac{\pi}{{3}}\right)}}}\) is \(\displaystyle\frac{\sqrt{{3}}}{{2}}\) and \(\displaystyle{\cos{{\left(\frac{\pi}{{3}}\right)}}}\) is \(\displaystyle\frac{{1}}{{2}}\), we can use the previously stated identity to figure out the value of \(\displaystyle{\tan{{\left(\frac{\pi}{{3}}\right)}}}\):
\(\displaystyle{\tan{{\left(\frac{\pi}{{3}}\right)}}}=\frac{{\quad{\sin{{\left(\frac{\pi}{{3}}\right)}}}\quad}}{{\cos{{\left(\frac{\pi}{{3}}\right)}}}}\)
\(\displaystyle{\color{white}{{\tan{{\left(\frac{\pi}{{3}}\right)}}}}}=\frac{{\quad\frac{\sqrt{{3}}}{{2}}\quad}}{{\frac{{1}}{{2}}}}\)
\(\displaystyle{\color{white}{{\tan{{\left(\frac{\pi}{{3}}\right)}}}}}=\frac{\sqrt{{3}}}{{2}}\cdot\frac{{2}}{{1}}\)
\(\displaystyle{\color{white}{{\tan{{\left(\frac{\pi}{{3}}\right)}}}}}=\frac{\sqrt{{3}}}{{\color{red}\cancel{{\color{black}{2}}}}}\cdot\frac{{\color{red}\cancel{{\color{black}{2}}}}}{{1}}\)
\(\displaystyle{\color{white}{{\tan{{\left(\frac{\pi}{{3}}\right)}}}}}=\frac{\sqrt{{3}}}{{1}}\cdot\frac{{1}}{{1}}\)
\(\displaystyle{\color{white}{{\tan{{\left(\frac{\pi}{{3}}\right)}}}}}=\frac{\sqrt{{3}}}{{1}}\cdot{1}\)
\(\displaystyle{\color{white}{{\tan{{\left(\frac{\pi}{{3}}\right)}}}}}=\frac{\sqrt{{3}}}{{1}}\)
\(\displaystyle{\color{white}{{\tan{{\left(\frac{\pi}{{3}}\right)}}}}}=\sqrt{{3}}\)
That's the value of \(\displaystyle{\tan{{\left(\frac{\pi}{{3}}\right)}}}\).

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?