How to simplify the expression sec^2x-1?

Kadyn Acevedo

Kadyn Acevedo

Answered question

2023-01-16

How to simplify the expression sec2x1?

Answer & Explanation

CredyBetCreta109

CredyBetCreta109

Beginner2023-01-17Added 11 answers

Using the \(\displaystyle{\color{blue}\text{}}{t}{r}{i}{g}{o}{n}{o}{m}{e}{t}{r}{i}{c}{i}{d}{e}{n}{t}{i}{t}{y}\text{}\)
\(\displaystyle{\color{red}{\overline{{\underline{{{\left|{\color{white}{\frac{{a}}{{a}}}}{\color{black}{{{\sin}^{{2}}{x}}+{{\cos}^{{2}}{x}}={1}}}{\color{white}{\frac{{a}}{{a}}}}\right|}}}}}}}\)
divide all terms on both sides by \(\displaystyle{{\cos}^{{2}}{x}}\)
\(\displaystyle\Rightarrow\frac{{{{\sin}^{{2}}{x}}}}{{{{\cos}^{{2}}{x}}}}+\frac{{{{\cos}^{{2}}{x}}}}{{{{\cos}^{{2}}{x}}}}=\frac{{1}}{{{{\cos}^{{2}}{x}}}}\)
\(\displaystyle{\color{\quad\textor\quadan\ge}\text{}}{R}{e}\min{d}{e}{r}\text{}\)
\(\displaystyle{\color{red}{\overline{{\underline{{{\left|{\color{white}{\frac{{a}}{{a}}}}{\color{black}{{\tan{{x}}}=\frac{{{\sin{{x}}}}}{{{\cos{{x}}}}}\text{}{\quad\text{and}\quad}\text{}{\sec{{x}}}=\frac{{1}}{{{\cos{{x}}}}}}}{\color{white}{\frac{{a}}{{a}}}}\right|}}}}}}}\)
\(\displaystyle\Rightarrow{{\tan}^{{2}}{x}}+{1}={{\sec}^{{2}}{x}}\)
Take 1 away from both sides.
\(\displaystyle{{\tan}^{{2}}{x}}\cancel{{+{1}}}\cancel{{-{1}}}={{\sec}^{{2}}{x}}-{1}\)
\(\displaystyle\Rightarrow{{\sec}^{{2}}{x}}-{1}={{\tan}^{{2}}{x}}\)
y1i2de1o64w

y1i2de1o64w

Beginner2023-01-18Added 2 answers

super!

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?