How to express sin 3theta in terms of trigonometric functions of theta ?

gelepikb165

gelepikb165

Answered question

2023-02-22

How to express sin 3 θ in terms of trigonometric functions of θ ?

Answer & Explanation

daneetuhxxtj

daneetuhxxtj

Beginner2023-02-23Added 8 answers

sin 3 x = sin ( 2 x + x ) = sin 2 x cos x + cos 2 x sin x
We possess dual identities:
sin 2 x = 2 sin x cos x
cos 2 x = cos 2 x - sin 2 x
sin 3 x = 2 sin x cos x cos x + ( cos 2 x - sin 2 x ) sin x
sin 3 x = 2 sin x cos 2 x + sin x cos 2 x - sin 3 x
sin 3 x = 3 sin x cos 2 x - sin 3 x
Vincent Burke

Vincent Burke

Beginner2023-02-24Added 9 answers

We can apply de Moivre's equation:
( cos θ + i sin θ ) n = cos n θ + i sin n θ
as follows:
cos 3 θ + i sin 3 θ
= ( cos θ + i sin θ ) 3
= cos 3 θ + 3 i cos 2 θ sin θ - 3 cos θ sin 2 θ - i sin 3 θ
= ( cos 3 θ - 3 cos θ sin 2 θ ) + i ( 3 cos 2 θ sin θ - sin 3 θ )
Then, when we compare the real and imaginary parts, we discover:
{ cos 3 θ = cos 3 θ - 3 cos θ sin 2 θ sin 3 θ = 3 cos 2 θ sin θ - sin 3 θ
We can also use the trigonometric version of Pythagoras' theorem:
cos 2 θ + sin 2 θ = 1
to refactor these formulae as follows:
cos 3 θ = cos 3 θ - 3 cos θ sin 2 θ
cos 3 θ = cos 3 θ - 3 cos θ ( 1 - cos 2 θ )
cos 3 θ = 4 cos 3 θ - 3 cos θ
sin 3 θ = 3 cos 2 θ sin θ - sin 3 θ
sin 3 θ = 3 ( 1 - sin 2 θ ) sin θ - sin 3 θ
sin 3 θ = 3 sin θ - 4 sin 3 θ

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?