Hayley Steele

2023-02-25

Convert 195 degrees to radians

abriladabchx

Beginner2023-02-26Added 6 answers

Determine the triangle's type:

The triangle's sides measure $6,8,$ and $10$.

The longest side length is $10$.

And the smaller sides are of lengths $6,8$.

The smaller side's sum of squares is now written as:

${6}^{2}+{8}^{2}=36+64=100$

And the square of the longer side is ${10}^{2}=100$.

Since the square of the longer side equals the sum of the squares of the smaller sides, this ${6}^{2}+{8}^{2}={10}^{2}$.

So, the sides make up a right triangle according to the Pythagorean Theorem.

So, the triangle has sides of length $6,8,$ and $10$ is a right triangle.

Therefore, the proper response is "yes," and the triangle supplied is a right triangle.

The triangle's sides measure $6,8,$ and $10$.

The longest side length is $10$.

And the smaller sides are of lengths $6,8$.

The smaller side's sum of squares is now written as:

${6}^{2}+{8}^{2}=36+64=100$

And the square of the longer side is ${10}^{2}=100$.

Since the square of the longer side equals the sum of the squares of the smaller sides, this ${6}^{2}+{8}^{2}={10}^{2}$.

So, the sides make up a right triangle according to the Pythagorean Theorem.

So, the triangle has sides of length $6,8,$ and $10$ is a right triangle.

Therefore, the proper response is "yes," and the triangle supplied is a right triangle.

Find an equation of the plane. The plane through the points (2, 1, 2), (3, −8, 6), and (−2, −3, 1), help please

A consumer in a grocery store pushes a cart with a force of 35 N directed at an angle of $25}^{\circ$ below the horizontal. The force is just enough to overcome various frictional forces, so the cart moves at a steady pace. Find the work done by the shopper as she moves down a $50.0-m$ length aisle.

??What is the derivative of $\mathrm{arcsin}\left[{x}^{\frac{1}{2}}\right]$?

What is the derivative of $y=\mathrm{arcsin}\left(\frac{3x}{4}\right)$?

Determine if the graph is symmetric about the $x$-axis, the $y$-axis, or the origin.$r=4\mathrm{cos}3\theta $.

How to differentiate $1+{\mathrm{cos}}^{2}\left(x\right)$?

What is the domain and range of $\left|\mathrm{cos}x\right|$?

How to find the value of $\mathrm{csc}74$?

How to evaluate $\mathrm{sec}\left(\pi \right)$?

Using suitable identity solve (0.99)raised to the power 2.

How to find the derivative of $y=\mathrm{tan}\left(3x\right)$?

Find the point (x,y) on the unit circle that corresponds to the real number t=pi/4

How to differentiate ${\mathrm{sin}}^{3}x$?

A,B,C are three angles of triangle. If A -B=15, B-C=30. Find A , B, C.

Find the value of $\mathrm{sin}{270}^{\circ}$.